US4639242A - Vessel and procedure for automated assay - Google Patents
Vessel and procedure for automated assay Download PDFInfo
- Publication number
- US4639242A US4639242A US06/698,013 US69801385A US4639242A US 4639242 A US4639242 A US 4639242A US 69801385 A US69801385 A US 69801385A US 4639242 A US4639242 A US 4639242A
- Authority
- US
- United States
- Prior art keywords
- vessel
- label
- mid
- analyte
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000003556 assay Methods 0.000 title description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 239000007790 solid phase Substances 0.000 claims abstract description 10
- 239000012491 analyte Substances 0.000 claims description 42
- 238000009987 spinning Methods 0.000 claims description 20
- 102000004190 Enzymes Human genes 0.000 claims description 10
- 108090000790 Enzymes Proteins 0.000 claims description 10
- 239000007791 liquid phase Substances 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 7
- 239000000427 antigen Substances 0.000 claims description 5
- 102000036639 antigens Human genes 0.000 claims description 5
- 108091007433 antigens Proteins 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000012071 phase Substances 0.000 claims description 5
- 230000002285 radioactive effect Effects 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 2
- 239000011888 foil Substances 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- 239000011541 reaction mixture Substances 0.000 claims 1
- 238000003018 immunoassay Methods 0.000 abstract description 15
- 239000007788 liquid Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 description 19
- 238000011534 incubation Methods 0.000 description 10
- 238000005119 centrifugation Methods 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 239000013049 sediment Substances 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 239000010414 supernatant solution Substances 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000003127 radioimmunoassay Methods 0.000 description 4
- 239000004382 Amylase Substances 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 241000473945 Theria <moth genus> Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 238000000703 high-speed centrifugation Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000015779 HDL Lipoproteins Human genes 0.000 description 1
- 108010010234 HDL Lipoproteins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- MCPLVIGCWWTHFH-UHFFFAOYSA-M disodium;4-[4-[[4-(4-sulfoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzenesulfonate Chemical compound [Na+].[Na+].C1=CC(S(=O)(=O)O)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)C=C1 MCPLVIGCWWTHFH-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000013374 right angle light scattering Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5021—Test tubes specially adapted for centrifugation purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B5/00—Other centrifuges
- B04B5/04—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
- B04B5/0407—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B7/00—Elements of centrifuges
- B04B7/08—Rotary bowls
Definitions
- a number of procedures in the clinical laboratory require centrifugation. Examples include clarification of samples by removal of sediments or cells and removal of interfering proteins by specific precipitating reagents. In such cases the desired supernatant solution is normally decanted from the centrifuge tube to a clean tube for further processing.
- the present invention allows complete physical separation of the precipitate and supernatant solution in a single tube so that the supernatant solution can be further treated or sampled as by pipetting without disturbing the precipitate.
- Hydrolytic enzymes can be measured by their action on insoluble substrates or soluble substrates that can be precipitated and separated from soluble products of hydrolysis. These assays can be performed in vessels of the present invention with fewer steps and/or reagents than is customarily used.
- Radioimmunoassay is a sensitive procedure for quantitating a variety of analytes of clinical importance. It is based on the competition between added radiolabelled analyte and analyte in the sample for limited binding sites on specific antibody in the reagent. The binding of radiolabelled analyte is inversely related to the concentration of analyte in the sample. The bound radioactivity can be separated from the unbound fraction by a variety of means such as precipitation with second antibody, polyethylene glycol or ammonium sulphate followed by centrifugation. The radioactivity in either the bound or unbound fraction is then counted. Alternatively, a fluorescent or enzyme label can be used rather than a radiolabel. These labels would require a different measuring instrument. However, the assay principle is the same. Quantitation of the assay is provided by reference to standards to known analyte concentration run as samples.
- Centrifugal analyzers have provided a means for the simultaneous initiation of multiple assays, and these instruments have found widespread use in the clinical laboratory of kinetic assays such as enzyme determinations. They are not well suited to the separation of precipitates as is required in conventional immunoassay procedures.
- each reaction tube In order to automate immunoassays involving centrifugation, particularly those that require precise timing of all steps in the analysis, each reaction tube must be centrifuged sequentially in the same order and timing sequence that reagents were added.
- the present invention provides for that possibility.
- Another approach to immunoassay employs specific antibody bound to the lower inside surface of the reaction tube. After a prolonged incubation of sample with radiolabelled analyte owing to the dependence on diffusion for antigen-antibody reactions, the contents of the tube are discarded, the tube washed to remove traces of unbound analyte, and the bound radioactivity on the tube counted.
- An automated version of the coated tube immunoassay has been developed by Micromedic Systems, Horsham PA (CONCEPT 4TM) which is cumbersome and requires long incubation times. A simpler procedure requiring shorter incubation times would be provided by the present invention.
- FIG. 1 is a perspective view of a reaction vessel incorporating the teachings of the present invention
- FIG. 2 is a longitudinal cross-sectional view of the reaction vessel of FIG. 1;
- FIG. 3 is a perspective view of a reaction vessel incorporating additional teachings of the present invention than shown in FIG. 1;
- FIG. 4 is a longitudinal cross-sectional view of the reaction vessel of FIG. 3.
- reaction vessel 1 which is longitudinally divided into a semi-spherical closed bottom portion 2, an elongated mid-portion 3, an enlarged cylindrical collection chamber 4, and a neck portion 5 which terminates in a top opening 6.
- Reaction vessels of FIG. 1 and FIG. 3 are molded out of suitable plastics such as polystyrene, polycarbonate, polypropylene and the like. They are normally disposed of after a single use. If convenient, the interior of the vessel may be coated with a specific antibody.
- the reaction vessel shown in FIG. or FIG. 3 may also optionally be fabricated to contain a longitudinally extending divider 26 within the interior of the vessel and extending from the interior bottom of the vessel. This divider will provide the interior of the vessel with a left reagent chamber 21, and a right reagent chamber 22.
- This alternative form of vessel 1 it is possible to place a first reactant in one reagent chamber and a second reactant in the second reagent chamber without causing interaction between the reagents.
- the reaction may then be started by tilting the vessel to allow the reagents in each chamber to mix, or by rapidly spinning the vessel about its longitudinal axis thereby causing the reactants to flow upward along the inside walls of the vessel and to mix during the spinning process.
- the vessel 1 contains a collection chamber portion 4 located near the uppermost portion of the vessel.
- This chamber is formed by an increase in the interior diameter of the vessel between two outwardly extending shoulders 24 and 25.
- practical interior diameter dimensions of the vessel may be 11.0 mm at the bottom portion 2, 13.0 mm at the mid-portion 3 immediately below shoulder 24, and 11.0 mm at opening 6.
- the collection chamber may have an interior diameter of 18.0 mm, the increase being brought about by the degree by which shoulders 24 and 25 are outwardly extending.
- these specific diameters may vary depending upon the practical considerations in the manufacture and use of individual vessels.
- the reaction vessel will act as a centrifugation tube spun about its longitudinal axis. If so spun, the contents will be forced towards the wall of the vessel be centrifugal force. As the vessel wall is tapered from a smaller lower diameter to a larger upper diameter the centrifugal force can be separated into two vectors: the major vector perpendicular to the vessel wall and a smaller vector in the upwards direction parallel to the vessel wall. If the latter force exceeds one gravity the tube contents will be transferred entirely to the upper cylindrical portion of the vessel where the heavier solids contained in the fluid will be deposited on the vessel wall. If the upward force vector is less than one gravity the vessel contents will remain entirely in the lower portion, assuming the vessel has not been over filled.
- the amount of centrifugal force required to exceed one gravity in the vertical direction is related to the degree of taper in the mid-portion of the vessel, the greater the taper the greater the vertical force vector and the less total centrifugal force required.
- the centrifugation speed required to achieve that centrifugal force is inversely related to the diameter of the vessel according to the following formula:
- centrifugation speed of over 3000 rpm would be required to force the vessel contents into the upper collection chamber.
- speeds of up to 2000 rpm could safely be employed for vortex mixing of the vessel contents.
- centrifugation speeds of 10,000 and 15,000 rpm would provide rcf's of 1,000 and 2,200 ⁇ gravity respectively.
- An advantage provided by the present reaction vessel is that the low mass permits very high speed spinning to rapidly separate liquid and solid phases. Extremely rapid separation is further enhanced by the short path the solid phase must traverse as it is spinning in an annular ring in the upper portion of the vessel. After cessation of spinning the liquid phase will return to the lower portion of the vessel thus providing complete physical and spacial separation of the liquid and solid phases.
- the vessel In addition to providing an appropriate means for spinning the vessel about its longitudinal axis, for example a chuck into which vessel 1 may fit, the vessel itself may be so modified, as shown in FIG. 3, to provide means for spinning.
- the vessel Immediately, below the collection chamber, and attached to the lower shoulder of the chamber, it is possible to provide a number of vertically and outwardly extending vanes 31.
- a high speed jet of air may be blown tangentially to the vessel and against the vanes 34 which will cause the vessel to spin about its longitudinal axis.
- the collection chamber of the reaction vessel shown in FIG. 3 is formed by sealing the opening 6 with metal or plastic film (not shown) which can be punctured for the addition of sample and/or reagents.
- the opening 6 can be closed with a tight-fitting cap 41. Sealed reaction vessels allow prefilling with specific reagent, either as a solution or in dry form for reconstitution with water or a suitable solvent.
- a further advantage of the vessel of FIG. 3 is that it can be fabricated with a simple two-piece injection mold.
- the vessel of FIG. 1 requires a more complex injection blow mold.
- the bottom portion of the reaction vessels of FIG. 1 and FIG. 3 can be made with an inverted conical shape 42 to facilitate engagement of the shaft of a motor and also to prevent the formation of a residual drop of fluid at the exact center of the bottom of the vessel where the centrifugal force is zero.
- the interior of the collection chamber can be fluted to provide V-grooves 32 for improved retention of precipitates which otherwise might become dislodged by the fluid phase as it returns to the lower section of the vessel on cessation of spinning.
- vessels of the present invention are conveyed on a continuous track at precisely timed intervals through a series of processing stations where samples and/or reagents are added, mixing is accomplished by slow speed spinning of the vessel, and separation of bound and unbound antigen by high speed spinning.
- amylase activity is determined from the concentration of soluble blue dyed starch fragments in the lower portion of the vessel measured photometrically using recognized protocols.
- Trypsin and other proteolytic enzymes can be quantitated by their action on proteins such as casein. After a timed incubation of sample with a solution of the substrate protein, undigested protein is precipitated with trichloroacetic acid. After centrifugation at high speed to sediment the precipitated undigested substrate in the upper chamber of the vessel, the concentration of soluble peptides in the lower portion is determined from the absorbance of the solution at 280 nm.
- An assay for uric acid in serum using AccUricTM is performed as follows: 0.1 ml of serum is added to a reaction vessel of FIG. 1 containing 1 ml of phosphotungstic acid reagent. After mixing by slow spinning and allowing to stand for 15 minutes, the precipitated protein is sedimented in the upper chamber by high speed centrifugation. Sodium carbonate reagent (0.5 ml) is added and mixed by slow spinning. The absorbance of the reduced phosphotungstate solution is then read in a spectrophotometer at 700 nm.
- High density lipoproteins are measured as cholesterol in the supernatant solution from serum or plasma after precipitation of other lipoproteins with a polyanion-divalent cation combination, such as heparin, dextran sulphate, or phosphotungstate combined with manganese, magnesium, or calcium ions.
- a polyanion-divalent cation combination such as heparin, dextran sulphate, or phosphotungstate combined with manganese, magnesium, or calcium ions.
- the precipitated lipoproteins are sedimented in the upper chamber of the reaction vessel and the cholesterol concentration of the supernatant solution is measured with any one of several colorimetric reagents for cholesterol.
- a radioimmunoassay is performed by incubating in the lower portion of the vessel rabbit antibody directed against the analyte of interest with a small amount of the same analyte labelled with a radioactive atom such as 125 I. After a timed incubation during which analyte in the same and labelled analyte compete for a limited number of binding sites on the antibody, the antibody along with the bound labelled and unlabelled analyte is precipitated by a mixture of polyethylene glycol (PEG) and goat anti-rabbit gamma globulin. The precipitate is sedimented in the upper chamber by high speed centrifugation after which the radioactivity in either the upper or lower portion of the vessel is counted.
- PEG polyethylene glycol
- a fluoresence immunoassay is performed in an analogous manner in the RIA in Example 5 except that a fluorescent label such as fluorescein or rhodamine is used instead of a radioactive label.
- the fluorescence of the solution in the lower portion of the vessel is measured with a fluorimeter.
- EIA enzyme immunoassay
- An immunoassay is performed by incubating in the lower portion of the vessel a sample such as blood serum with a solution containing an antibody directed against the analyte to be measured which is saturated with analyte labelled with a radioisotope, fluorescent molecule or enzyme as in Examples 5-7. After a timed incubation during which analyte in the sample displaces the labelled analyte bound to the antibody in proportion to the concentration of analyte in the sample, a second reagent such as antibody directed against the specific antibody combined with PEG is added to precipitate all of the specific antibody along with the bound labelled analyte. The vessel is centrifuged at high speed to sediment the antibody with bound labelled analyte in the upper chamber and the label is quantitated in the lower portion of the vessel by suitable instrumentation.
- a sample such as blood serum
- a solution containing an antibody directed against the analyte to be measured which is saturated with analyte labelled with a radiois
- An immunoassay is performed by incubating in the lower portion of the vessel a sample such as serum with a suspension of antibody directed against the analyte to be measured which is saturated with analyte labelled with a radioisotope, fluorescent molecule, or enzyme as in Examples 5-7 and is coupled or otherwise bound to a solid particle such as Sephadex, latex, or Staphlococcus aureus.
- the vessel After a timed incubation during which analyte in the sample displaces the labelled analyte bound to the antibody in proportion to the concentration of analyte in the sample, the vessel is centrifuged at high speed to sediment the suspension of antibody with bound labelled analyte in the upper chamber and the label is quantitated in the lower portion of the vessel by suitable instrumentation.
- An immunoassay is performed by incubating in the lower portion of the vessel for a timed period a sample such as blood serium with an excess of monovalent antibody (F(ab)) directed against the analyte of interest and labelled with a radioisotope, fluorescent molecule, or enzyme.
- F(ab) monovalent antibody
- An excess of analyte, insolubilized by, for example, bonding to an inert particle such as Sephadex is then added.
- the vessel contents are mixed by slow spinning and incubated briefly during which time all excess labelled antibody, i.e. not bound to analyte in the sample, is reacted.
- the mixture is then centrifuged at high speed to sediment in the upper chamber the excess label and the label in the lower portion of the vessel, in direct proportion to the concentration of analyte in the sample, is quantitated by suitable instrumentation.
- An immunoassay is performed by incubating in the lower portion of the vessel for a timed period a sample such as blood serum with an excess of the analyte of interest which is coupled to an insoluble particle as in Example 9 and the analyte is also saturated with antibody which has been labelled with a radioisotope fluorescent molecule or enzyme. Analyte in the sample displaces antibody from the insoluble particles in direct proportion to its concentration. The mixture is then centrifuged at high speed to sediment in the upper chamber the undisplaced labelled antibody, and the concentration of displaced labelled antibody in the lower portion is quantitated by suitable instrumentation.
- Immunoassays are performed as in Examples 10 and 11 except that the antibody is labelled with colloidal gold and the concentration of label in the lower portion of the tube is determined either by right-angle light scattering or by measuring the absorbance of the solution at 540 nm.
- An immunoassay is performed by incubating in the lower portion of the vessel, the surface to which has bound to it antibody directed against the analyte of interest, a sample such as blood serum. After a timed incubation during which the vessel can be intermittently spun at slow speed to hasten the reaction between analyte in the sample and the antibody on the vessel, antibody against the same analyte but labelled with a radioisotope is added.
- the vessel After a timed incubation during which the labelled antibody reacts with analyte bound to the first antibody forming a "sandwich" directly proportional to the concentration of analyte, the vessel is centrifuged at high speed and the radioactivity bound to the lower portion of the vessel is counted while the vessel is spinning.
- analytes such as proteins which have multiple antigenic sites.
- An immunoassay similar to that in Example 13 but applicable to small molecules with only a single antigenic determinant is performed by incubating sample with radiolabelled analyte which then compete for binding sites on the antibody coating the lower portion of the vessel.
- the radioactivity bound to the lower portion, which is counted while the device is spinning at high speed, is inversely proportional to the concentration of analyte in the sample.
- a semi-automated method of analysis according to Examples 1-14 is performed by manually adding sample to be assayed to one side of the divided lower portion 21 of the reaction vessel of FIG. 2 and the first reagent involved is added to the other side 22.
- the timing of the reaction is precisely controlled by automatically initiating the reaction in each vessel by spinning the vessels in turn.
- a fully automated method of analysis according to Examples 1-14 is performed by conveying the reaction vessels on a track or turntable at precisely timed intervals through a series of processing stations where samples and/or reagents are added, mixing is accomplished by slow speed spinning of the vessels, separation of a precipitate or solid phase is accomplished by high speed spinning, and measurement of the analyte in either the solid or liquid phase is accomplished by appropriate means.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
rcf=5.585d(rpm/1000).sup.2
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/698,013 US4639242A (en) | 1985-02-04 | 1985-02-04 | Vessel and procedure for automated assay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/698,013 US4639242A (en) | 1985-02-04 | 1985-02-04 | Vessel and procedure for automated assay |
Publications (1)
Publication Number | Publication Date |
---|---|
US4639242A true US4639242A (en) | 1987-01-27 |
Family
ID=24803552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/698,013 Expired - Fee Related US4639242A (en) | 1985-02-04 | 1985-02-04 | Vessel and procedure for automated assay |
Country Status (1)
Country | Link |
---|---|
US (1) | US4639242A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989001827A1 (en) * | 1987-09-04 | 1989-03-09 | Haemonetics Corporation | Portable centrifuge apparatus |
US5084240A (en) * | 1988-07-25 | 1992-01-28 | Cirrus Diagnostics Inc. | Centrifuge vessel for automated solid-phase immunoassay |
US5098845A (en) * | 1988-07-25 | 1992-03-24 | Cirrus Diagnostics, Inc. | Device and procedure for automated solid-phase immunoassay |
WO1993010455A1 (en) * | 1991-11-21 | 1993-05-27 | Cirrus Diagnostics, Inc. | Improved centrifuge vessel for automated solid-phase immunoassay |
US5244635A (en) * | 1992-06-19 | 1993-09-14 | Cirrus Diagnostics, Inc. | Centrifuge vessel with coaxial waste chamber having cap to prevent waste fluid transfer from the chamber into the vessel |
US5258309A (en) * | 1988-07-25 | 1993-11-02 | Cirrus Diagnostics, Inc. | Procedure for automated solid-phase immunoassay using a centrifuge tube |
US5318748A (en) * | 1988-07-25 | 1994-06-07 | Cirrus Diagnostics, Inc. | Centrifuge vessel for automated solid-phase immunoassay having integral coaxial waste chamber |
WO1997012679A1 (en) * | 1995-10-03 | 1997-04-10 | Beckman Instruments, Inc. | Axial spin blood separation system and method |
US5714389A (en) * | 1988-06-27 | 1998-02-03 | Carter-Wallace, Inc. | Test device and method for colored particle immunoassay |
US5916526A (en) * | 1995-08-11 | 1999-06-29 | Robbins Scientific Corporation | Compartmentalized multi-well container |
US6235537B1 (en) * | 1996-06-20 | 2001-05-22 | Cytek Corporation | Methods for washing cells |
US6365104B1 (en) * | 1999-06-25 | 2002-04-02 | Becton Dickinson And Company | Assembly for analyzing blood samples |
US6379626B1 (en) | 1999-09-03 | 2002-04-30 | Array Biopharma | Reactor plate clamping system |
US6403379B1 (en) | 1999-09-03 | 2002-06-11 | Array Biopharma | Reactor plate washing station |
EP1234614A1 (en) * | 2001-02-27 | 2002-08-28 | Pentapharm Gmbh | Metering vessel subdivided by ribs for receiving reagents, its fabrication and use |
US20030168374A1 (en) * | 2002-03-06 | 2003-09-11 | O'neill Adrian T. | Anti-sticking preforms for blow molded articles |
US20060245865A1 (en) * | 2005-03-24 | 2006-11-02 | Babson Arthur L | Carousel system for automated chemical or biological analyzers employing linear racks |
US20090296083A1 (en) * | 2006-03-14 | 2009-12-03 | Saaski Elric W | Optical assay apparatus and methods |
US20100083773A1 (en) * | 2008-10-04 | 2010-04-08 | Eppendorf Ag | Sample carrier |
US20100083774A1 (en) * | 2008-10-04 | 2010-04-08 | Eppendorf Ag | Forensic pipette |
US20100167415A1 (en) * | 2008-12-30 | 2010-07-01 | Eppendorf Ag | Aliquotting device |
US20100193524A1 (en) * | 2009-02-05 | 2010-08-05 | Eppendorf Ag | Preserving container |
US7887758B2 (en) | 1998-09-18 | 2011-02-15 | Cytyc Corporation | Sample vial for use in preparing cytological specimen |
WO2016016345A1 (en) * | 2014-07-30 | 2016-02-04 | F. Hoffmann - La Roche Ag | Automated system for processing particles |
US9513197B2 (en) * | 2014-11-07 | 2016-12-06 | Theranos, Inc. | Methods, devices, and systems for mixing fluids |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1019022A (en) * | 1909-05-21 | 1912-03-05 | Frederick Stearns & Company | Container and dropper. |
US2009690A (en) * | 1932-11-14 | 1935-07-30 | Laval Separator Co De | Centrifuge tube |
CH282440A (en) * | 1946-10-28 | 1952-04-30 | Aktiebolag Rudolph Grave | Method and device for concentrating material suspended in a liquid for analysis purposes. |
US3513976A (en) * | 1968-03-19 | 1970-05-26 | William C James | Leukocyte flask and method of obtaining white cells from whole blood |
-
1985
- 1985-02-04 US US06/698,013 patent/US4639242A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1019022A (en) * | 1909-05-21 | 1912-03-05 | Frederick Stearns & Company | Container and dropper. |
US2009690A (en) * | 1932-11-14 | 1935-07-30 | Laval Separator Co De | Centrifuge tube |
CH282440A (en) * | 1946-10-28 | 1952-04-30 | Aktiebolag Rudolph Grave | Method and device for concentrating material suspended in a liquid for analysis purposes. |
US3513976A (en) * | 1968-03-19 | 1970-05-26 | William C James | Leukocyte flask and method of obtaining white cells from whole blood |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4889524A (en) * | 1987-09-04 | 1989-12-26 | Haemonetics Corporation | Portable centrifuge apparatus |
WO1989001827A1 (en) * | 1987-09-04 | 1989-03-09 | Haemonetics Corporation | Portable centrifuge apparatus |
US5714389A (en) * | 1988-06-27 | 1998-02-03 | Carter-Wallace, Inc. | Test device and method for colored particle immunoassay |
US6485982B1 (en) | 1988-06-27 | 2002-11-26 | Armkel, Llc | Test device and method for colored particle immunoassay |
US5989921A (en) * | 1988-06-27 | 1999-11-23 | Carter Wallace, Inc. | Test device and method for colored particle immunoassay |
US5084240A (en) * | 1988-07-25 | 1992-01-28 | Cirrus Diagnostics Inc. | Centrifuge vessel for automated solid-phase immunoassay |
US5098845A (en) * | 1988-07-25 | 1992-03-24 | Cirrus Diagnostics, Inc. | Device and procedure for automated solid-phase immunoassay |
US5258309A (en) * | 1988-07-25 | 1993-11-02 | Cirrus Diagnostics, Inc. | Procedure for automated solid-phase immunoassay using a centrifuge tube |
US5318748A (en) * | 1988-07-25 | 1994-06-07 | Cirrus Diagnostics, Inc. | Centrifuge vessel for automated solid-phase immunoassay having integral coaxial waste chamber |
WO1993010455A1 (en) * | 1991-11-21 | 1993-05-27 | Cirrus Diagnostics, Inc. | Improved centrifuge vessel for automated solid-phase immunoassay |
US5244635A (en) * | 1992-06-19 | 1993-09-14 | Cirrus Diagnostics, Inc. | Centrifuge vessel with coaxial waste chamber having cap to prevent waste fluid transfer from the chamber into the vessel |
WO1994000762A1 (en) * | 1992-06-19 | 1994-01-06 | Cirrus Diagnostics, Inc. | Centrifuge vessel for automated solid-phase immunoassay |
US5916526A (en) * | 1995-08-11 | 1999-06-29 | Robbins Scientific Corporation | Compartmentalized multi-well container |
AU700988B2 (en) * | 1995-10-03 | 1999-01-14 | Beckman Instruments, Inc. | Axial spin blood separation system and method |
WO1997012679A1 (en) * | 1995-10-03 | 1997-04-10 | Beckman Instruments, Inc. | Axial spin blood separation system and method |
US6235537B1 (en) * | 1996-06-20 | 2001-05-22 | Cytek Corporation | Methods for washing cells |
US7887758B2 (en) | 1998-09-18 | 2011-02-15 | Cytyc Corporation | Sample vial for use in preparing cytological specimen |
US6365104B1 (en) * | 1999-06-25 | 2002-04-02 | Becton Dickinson And Company | Assembly for analyzing blood samples |
US6379626B1 (en) | 1999-09-03 | 2002-04-30 | Array Biopharma | Reactor plate clamping system |
US6403379B1 (en) | 1999-09-03 | 2002-06-11 | Array Biopharma | Reactor plate washing station |
EP1234614A1 (en) * | 2001-02-27 | 2002-08-28 | Pentapharm Gmbh | Metering vessel subdivided by ribs for receiving reagents, its fabrication and use |
US20030168374A1 (en) * | 2002-03-06 | 2003-09-11 | O'neill Adrian T. | Anti-sticking preforms for blow molded articles |
US7670553B2 (en) | 2005-03-24 | 2010-03-02 | Siemens Healthcare Diagnostics Inc. | Carousel system for automated chemical or biological analyzers employing linear racks |
US20060245865A1 (en) * | 2005-03-24 | 2006-11-02 | Babson Arthur L | Carousel system for automated chemical or biological analyzers employing linear racks |
US20090296083A1 (en) * | 2006-03-14 | 2009-12-03 | Saaski Elric W | Optical assay apparatus and methods |
US7651869B2 (en) | 2006-03-14 | 2010-01-26 | Research International, Inc. | Optical assay apparatus and methods |
US20100083773A1 (en) * | 2008-10-04 | 2010-04-08 | Eppendorf Ag | Sample carrier |
US20100083774A1 (en) * | 2008-10-04 | 2010-04-08 | Eppendorf Ag | Forensic pipette |
US20100167415A1 (en) * | 2008-12-30 | 2010-07-01 | Eppendorf Ag | Aliquotting device |
US20100193524A1 (en) * | 2009-02-05 | 2010-08-05 | Eppendorf Ag | Preserving container |
WO2016016345A1 (en) * | 2014-07-30 | 2016-02-04 | F. Hoffmann - La Roche Ag | Automated system for processing particles |
CN106573256A (en) * | 2014-07-30 | 2017-04-19 | 豪夫迈·罗氏有限公司 | Automated system for processing particles |
JP2017522887A (en) * | 2014-07-30 | 2017-08-17 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | Automated system for processing particles |
US20180010990A1 (en) * | 2014-07-30 | 2018-01-11 | Roche Diagnostics Operations, Inc. | Automated system for processing particles |
CN106573256B (en) * | 2014-07-30 | 2019-06-14 | 豪夫迈·罗氏有限公司 | For handling the automated system of particle |
US10436685B2 (en) | 2014-07-30 | 2019-10-08 | Roche Diagnostics Operations, Inc. | Automated system for processing particles |
JP2020110175A (en) * | 2014-07-30 | 2020-07-27 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | Automated system for processing particles |
US11169061B2 (en) | 2014-07-30 | 2021-11-09 | Roche Diagnostics Operations, Inc. | Automated system for processing particles |
US9513197B2 (en) * | 2014-11-07 | 2016-12-06 | Theranos, Inc. | Methods, devices, and systems for mixing fluids |
US10114033B2 (en) | 2014-11-07 | 2018-10-30 | Theranos Ip Company, Llc | Methods, devices, and systems for mixing fluids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4639242A (en) | Vessel and procedure for automated assay | |
US4197287A (en) | Method and apparatus for performing in nitro clinical diagnostic tests using a solid phase assay system having special utility for use with automatic pipetting equipment | |
JP2854058B2 (en) | Method and apparatus for performing an assay | |
FI91566C (en) | Device for determining a target ligand associated with cellular material | |
US4148607A (en) | Apparatus and analysis for agglutination reaction | |
US4244694A (en) | Reactor/separator device for use in automated solid phase immunoassay | |
US4458020A (en) | Integrated single tube plunger immunoassay system having plural reagent chambers | |
US4868130A (en) | Methods for conducting specific binding assays | |
US4424279A (en) | Rapid plunger immunoassay method and apparatus | |
US6114179A (en) | Method and test kit for detecting antigens and/or antibodies | |
US8999729B2 (en) | Device and analyzing system for conducting agglutination assays | |
US5460940A (en) | Method for detecting antigens and/or antibodies | |
US4690899A (en) | Process and device for carrying out analytical determinations | |
US5084240A (en) | Centrifuge vessel for automated solid-phase immunoassay | |
WO1993019827A1 (en) | Analytical rotor with dye mixing chamber | |
JPH11316226A (en) | Cartridge for automatic measurement and automatic measuring method | |
JP7361492B2 (en) | Laboratory systems and methods for separating interfering substances contained in test samples | |
US5244635A (en) | Centrifuge vessel with coaxial waste chamber having cap to prevent waste fluid transfer from the chamber into the vessel | |
US5318748A (en) | Centrifuge vessel for automated solid-phase immunoassay having integral coaxial waste chamber | |
GB1584129A (en) | Method and apparatus for performing in vitro clinical diagnostic tests using a solid phase assay system | |
JPS5973766A (en) | Device for separating, washing and reading ultrafine partic-le and its use | |
US5098845A (en) | Device and procedure for automated solid-phase immunoassay | |
US7566572B2 (en) | Immunological assay and chip | |
WO1993010455A1 (en) | Improved centrifuge vessel for automated solid-phase immunoassay | |
JPH102900A (en) | Method for detecting analyte in sample liquid, reagent kit and reaction vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES DENIED/DISMISSED (ORIGINAL EVENT CODE: PMFD); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PAYMENT IS IN EXCESS OF AMOUNT REQUIRED. REFUND SCHEDULED (ORIGINAL EVENT CODE: F169); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY, PL 97-247 (ORIGINAL EVENT CODE: R273); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PAYMENT AFTER EXPIRATION (ORIGINAL EVENT CODE: R178); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES DENIED/DISMISSED (ORIGINAL EVENT CODE: PMFD); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19910127 |
|
AS | Assignment |
Owner name: CIRRUS DIAGNOSTICS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BABSON, ARTHUR L.;REEL/FRAME:006388/0476 Effective date: 19930112 |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |