US5215244A - Method of mounting silicon wafers on metallic mounting surfaces - Google Patents
Method of mounting silicon wafers on metallic mounting surfaces Download PDFInfo
- Publication number
- US5215244A US5215244A US07/840,327 US84032792A US5215244A US 5215244 A US5215244 A US 5215244A US 84032792 A US84032792 A US 84032792A US 5215244 A US5215244 A US 5215244A
- Authority
- US
- United States
- Prior art keywords
- valve body
- wafer
- intermediate element
- major surface
- applying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/166—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/168—Assembling; Disassembling; Manufacturing; Adjusting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1853—Orifice plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C5/00—Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/0074—Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0082—Microvalves adapted for a particular use
- F16K2099/0096—Fuel injection devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01068—Erbium [Er]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0133—Ternary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
Definitions
- the present invention relates generally to methods of mounting semiconductor wafers on a metallic surface and, more particularly, to an improved method of securing silicon wafers used in making valves, such as those used in fuel injection.
- FIGS. 12 and 15 of this disclosure indicate that the silicon wafers 81, 152 are clamped against the valve body.
- the method of the present invention for mounting of silicon wafers on metallic mounting surfaces represents an advantageous possibility for coupling of micromechanical silicon structures, e.g. aperture plates or valves, to valve bodies made according to classical precision mechanical manufacturing methods.
- a semiconductor e.g. silicon
- a metal element such as a valve body
- a metal coating is first applied to the silicon, and the metal coating is then soldered to the metal valve body, which results in a more permanent solder bond.
- Another advantageous feature is the use of an intermediate element, through which the silicon wafer is secured to the valve body. It is desirable to select, as the material for the intermediate element, one whose thermal coefficient of expansion is compatible with the coefficients of the silicon wafer and of the valve body.
- the intermediate element can thus "buffer" any differences in the coefficients of the silicon and of the metal.
- a particularly tension-free or stress-free assembly can be achieved using a deep-drawn or otherwise curved element which serves to clamp the silicon wafer against the valve body.
- the silicon wafer is preferably soldered to the intermediate element, and the element is subsequently secured to the valve body in a region surrounding the silicon wafer.
- the resulting arrangement is that the silicon wafer is fixed with respect to the valve body, yet not directly connected. This can, for example, keep an aperture in the wafer aligned with the center of a passage or conduit formed in the valve.
- FIGS. 1 and 2 illustrate silicon wafers directly connected to a valve body
- FIGS. 3 and 4 illustrate alternative implementations of assembly of silicon wafers to a valve body using an intermediate element.
- valve body 20 is formed with a central bore 21.
- This valve body is conventionally made from metal by precision mechanical methods, but may also be made from another material, for example plastic.
- the significant feature is that valve body 20 has a metallic mounting surface, onto which a silicon wafer 10 is to be secured.
- silicon wafer 10 is structured, and serves as aperture plate in the valve structure.
- the method of the invention is, however, also usable for silicon wafers with other structures and functions.
- Silicon wafer 10 has, on its major surface adjacent valve body 20, a metal coating or layer 11. This metal coating 11 can be, for example, chromium, nickel, or gold, applied by any of several conventional methods, such as vapor deposition.
- This metallized major surface of wafer 10 is soldered to the metallic mounting surface of the valve body.
- a solder layer 15 is thereby created between silicon wafer 10 and valve body 20.
- a solder frame 17 is placed on the surface of valve body 20. This solder frame 17 serves as a positioning aid for silicon wafer 10, which is justified with valve body 20 before connection, in order that the aperture of silicon wafer 10 and bore 21 in valve body 20 will be centrally aligned with respect to each other.
- FIG. 2 represents a valve structure as in FIG. 1, but with an additional positioning aid, consisting of a casing 27 of valve body 20.
- Casing 27 projects outward from the mounting surface of valve body 20, so that solder frame 17 can be simply fitted or applied inside the perimeter defined by casing 27.
- Casing 27 can be, for example, a small aluminum tube.
- silicon wafer 10 was initially soldered, with its metallized major surface, against the metallic mounting surface of an intermediate element 25.
- a solder frame 17, for positioning of silicon wafer 10, is applied to intermediate carrier or element 25. Thereafter, intermediate element 25 is secured to valve body 20, which can be accomplished by, for example, laser welding of local areas.
- the material of intermediate element 25 is so chosen that, in the event of temperature fluctuations, element 25 mediates any differences in thermal expansion/contraction coefficients of silicon wafer 10 and valve body 20, and thus minimizes mechanical stresses between silicon wafer 10 and valve body 20.
- a suitable "buffer" or intermediate element 25 is the material sold under the trademark KOVAR (U.S. TM Reg. No. 337,962 of Carpenter Technology Corp., Reading, Pa., for an alloy containing about 54% iron, 28% nickel and 18% cobalt).
- FIG. 4 also has an intermediate element 25' but, in contrast to the planar intermediate element 25 of FIG. 3, this element 25' is domed or bowed over the valve body.
- the metallized major surface of silicon wafer 10 faces away from valve body 20, and the metallized surface is soldered to the undersurface of element 25', that is, to another portion of the same surface of element 25' which faces valve body 20.
- Element 25' is then connected to valve body 20 in a region surrounding silicon wafer 10.
- silicon wafer 10 is arranged between valve body 20 and intermediate element 25', and is secured to element 25' but not directly to valve body 20. Due to the connection of element 25' to valve body 20, the position of silicon wafer 10 and its aperture, with respect to valve body 20 and its bore 31, is fixed. This structure is particularly stress-free, since no direct, fixed connection exists between silicon wafer 10 and valve body 20, but rather only an indirect connection via element 25'. No harm arises if a steel valve body expands more, in response to a temperature rise, than silicon wafer 20 expands.
- solder connection between silicon wafer 10 and the metallic mounting surface can be either over the entire surface or in localized areas, as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Theoretical Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Wire Bonding (AREA)
- Valve Housings (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Magnetically Actuated Valves (AREA)
- Sliding Valves (AREA)
Abstract
A method of mounting a semiconductor wafer (10) on a metallic mounting surface, particularly during manufacture of valves with macromechanical valve bodies (20), features the steps of applying a metallization (11) to at least one major surface of the semiconductor wafer, and thereafter soldering the thus-metallized major surface, either wholly or in localized surface areas, to the metallic mounting surface.
Description
U.S. Pat. No. 4,647,013, GIACHINO & KRESS/FORD, Mar. 3, 1987, entitled SILICON VALVE;
U.S. Ser. No. 07/756,490, GERSTNER et al./BOSCH, Sep. 9, 1991.
The present invention relates generally to methods of mounting semiconductor wafers on a metallic surface and, more particularly, to an improved method of securing silicon wafers used in making valves, such as those used in fuel injection.
From U.S. Pat. No. 4,647,013, it is known to use, in combination with a macromechanical valve body, structured silicon wafers which are components of a micromechanical valve. FIGS. 12 and 15 of this disclosure indicate that the silicon wafers 81, 152 are clamped against the valve body.
The method of the present invention for mounting of silicon wafers on metallic mounting surfaces represents an advantageous possibility for coupling of micromechanical silicon structures, e.g. aperture plates or valves, to valve bodies made according to classical precision mechanical manufacturing methods.
It is an object of the present invention to secure a semiconductor, e.g. silicon, element to a metal element, such as a valve body, preferably in a way that facilitates proper alignment and minimizes problems arising from differing thermal coefficients of expansion. Soldering is more secure than clamping, but sometimes solder does not stick to silicon well.
Accordingly, in the method of the present invention, a metal coating is first applied to the silicon, and the metal coating is then soldered to the metal valve body, which results in a more permanent solder bond.
Another advantageous feature is the use of an intermediate element, through which the silicon wafer is secured to the valve body. It is desirable to select, as the material for the intermediate element, one whose thermal coefficient of expansion is compatible with the coefficients of the silicon wafer and of the valve body. The intermediate element can thus "buffer" any differences in the coefficients of the silicon and of the metal. A particularly tension-free or stress-free assembly can be achieved using a deep-drawn or otherwise curved element which serves to clamp the silicon wafer against the valve body. The silicon wafer is preferably soldered to the intermediate element, and the element is subsequently secured to the valve body in a region surrounding the silicon wafer. The resulting arrangement is that the silicon wafer is fixed with respect to the valve body, yet not directly connected. This can, for example, keep an aperture in the wafer aligned with the center of a passage or conduit formed in the valve.
FIGS. 1 and 2 illustrate silicon wafers directly connected to a valve body; and
FIGS. 3 and 4 illustrate alternative implementations of assembly of silicon wafers to a valve body using an intermediate element.
In FIG. 1, a valve body 20 is formed with a central bore 21. This valve body is conventionally made from metal by precision mechanical methods, but may also be made from another material, for example plastic. The significant feature is that valve body 20 has a metallic mounting surface, onto which a silicon wafer 10 is to be secured. In this and all following examples, silicon wafer 10 is structured, and serves as aperture plate in the valve structure. The method of the invention is, however, also usable for silicon wafers with other structures and functions. Silicon wafer 10 has, on its major surface adjacent valve body 20, a metal coating or layer 11. This metal coating 11 can be, for example, chromium, nickel, or gold, applied by any of several conventional methods, such as vapor deposition. This metallized major surface of wafer 10 is soldered to the metallic mounting surface of the valve body. A solder layer 15 is thereby created between silicon wafer 10 and valve body 20. In the example shown in FIG. 1, a solder frame 17 is placed on the surface of valve body 20. This solder frame 17 serves as a positioning aid for silicon wafer 10, which is justified with valve body 20 before connection, in order that the aperture of silicon wafer 10 and bore 21 in valve body 20 will be centrally aligned with respect to each other.
FIG. 2 represents a valve structure as in FIG. 1, but with an additional positioning aid, consisting of a casing 27 of valve body 20. Casing 27 projects outward from the mounting surface of valve body 20, so that solder frame 17 can be simply fitted or applied inside the perimeter defined by casing 27. Casing 27 can be, for example, a small aluminum tube.
For the structure shown in FIG. 3, silicon wafer 10 was initially soldered, with its metallized major surface, against the metallic mounting surface of an intermediate element 25.
A solder frame 17, for positioning of silicon wafer 10, is applied to intermediate carrier or element 25. Thereafter, intermediate element 25 is secured to valve body 20, which can be accomplished by, for example, laser welding of local areas. Preferably, the material of intermediate element 25 is so chosen that, in the event of temperature fluctuations, element 25 mediates any differences in thermal expansion/contraction coefficients of silicon wafer 10 and valve body 20, and thus minimizes mechanical stresses between silicon wafer 10 and valve body 20. For example, if valve body 20 is steel, a suitable "buffer" or intermediate element 25 is the material sold under the trademark KOVAR (U.S. TM Reg. No. 337,962 of Carpenter Technology Corp., Reading, Pa., for an alloy containing about 54% iron, 28% nickel and 18% cobalt).
The structure shown in FIG. 4 also has an intermediate element 25' but, in contrast to the planar intermediate element 25 of FIG. 3, this element 25' is domed or bowed over the valve body. The metallized major surface of silicon wafer 10 faces away from valve body 20, and the metallized surface is soldered to the undersurface of element 25', that is, to another portion of the same surface of element 25' which faces valve body 20.
Element 25' is then connected to valve body 20 in a region surrounding silicon wafer 10. Thus, silicon wafer 10 is arranged between valve body 20 and intermediate element 25', and is secured to element 25' but not directly to valve body 20. Due to the connection of element 25' to valve body 20, the position of silicon wafer 10 and its aperture, with respect to valve body 20 and its bore 31, is fixed. This structure is particularly stress-free, since no direct, fixed connection exists between silicon wafer 10 and valve body 20, but rather only an indirect connection via element 25'. No harm arises if a steel valve body expands more, in response to a temperature rise, than silicon wafer 20 expands.
In all the above-described examples, the solder connection between silicon wafer 10 and the metallic mounting surface can be either over the entire surface or in localized areas, as appropriate.
Claims (8)
1. Method of mounting a semiconductor wafer (10) on a metallic mounting surface of a valve body (20),
comprising the steps of
applying a metallization (11) to at least one major surface of said semiconductor wafer (10); and
soldering the thus-metallized major surface directly to said metallic mounting surface of said valve body (20).
2. Method according to claim 1,
wherein said applying step comprises applying a metal selected from the group consisting of chromium, nickel and gold.
3. Method according to claim 1, further comprising
prior to said soldering step,
applying a positioning aid (17, 27) to said metallic mounting surface, and
using said positioning aid to align an aperture formed in said silicon wafer with respect to an aperture formed in said metallic mounting surface of said body.
4. Method of mounting a semiconductor wafer (10) on a metallic mounting surface of a valve body (20),
comprising the steps of
applying a metallization (11) to at least one major surface of said semiconductor wafer (10);
soldering the thus-metallized major surface to a mounting surface of an intermediate element (25'); and
securing said intermediate element (25') to said valve body (20).
5. Method according to claim 4, wherein said intermediate element (25') is secured by laser welding to said valve body.
6. Method according to claim 4, wherein said intermediate element (25) is generally planar and forms a layer intermediate said valve body (20) and said wafer (10).
7. Method according to claim 4, wherein
said intermediate element (25') has first and second major surfaces, and is both soldered to said wafer (10) by said first major surface and secured to said valve body (20) by said first major surface, thereby securing said wafer (10) in position between said element (25') and said valve body (20) without directly connecting said wafer to said valve body.
8. Method according to claim 5, wherein said applying step comprises applying a metal selected from the group consisting of chromium, nickel and gold.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4107660 | 1991-03-09 | ||
DE4107660A DE4107660C2 (en) | 1991-03-09 | 1991-03-09 | Process for mounting silicon wafers on metallic mounting surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
US5215244A true US5215244A (en) | 1993-06-01 |
Family
ID=6426918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/840,327 Expired - Fee Related US5215244A (en) | 1991-03-09 | 1992-02-24 | Method of mounting silicon wafers on metallic mounting surfaces |
Country Status (4)
Country | Link |
---|---|
US (1) | US5215244A (en) |
JP (1) | JPH0599347A (en) |
DE (1) | DE4107660C2 (en) |
GB (1) | GB2254278B (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5377900A (en) * | 1993-12-29 | 1995-01-03 | At&T Corp. | Method of precisely positioning and mating two workpieces |
US5657358A (en) | 1985-03-20 | 1997-08-12 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or plurality of RF channels |
US5678304A (en) * | 1996-07-24 | 1997-10-21 | Eastman Kodak Company | Method for manufacturing double-sided circuit assemblies |
US5842137A (en) * | 1986-08-07 | 1998-11-24 | Interdigital Technology Corporation | Subscriber unit for wireless digital telephone system |
US5852604A (en) | 1993-09-30 | 1998-12-22 | Interdigital Technology Corporation | Modularly clustered radiotelephone system |
US6505811B1 (en) | 2000-06-27 | 2003-01-14 | Kelsey-Hayes Company | High-pressure fluid control valve assembly having a microvalve device attached to fluid distributing substrate |
US6523560B1 (en) | 1998-09-03 | 2003-02-25 | General Electric Corporation | Microvalve with pressure equalization |
US6761420B2 (en) | 1998-09-03 | 2004-07-13 | Ge Novasensor | Proportional micromechanical device |
US20050121090A1 (en) * | 2000-03-22 | 2005-06-09 | Hunnicutt Harry A. | Thermally actuated microvalve device |
US20050156129A1 (en) * | 1998-09-03 | 2005-07-21 | General Electric Company | Proportional micromechanical valve |
US20060022160A1 (en) * | 2004-07-27 | 2006-02-02 | Fuller Edward N | Method of controlling microvalve actuator |
US20060200988A1 (en) * | 2005-03-11 | 2006-09-14 | Siemens Vdo Automotive Corporation | Sandwich orifice disc |
US20070172362A1 (en) * | 2003-11-24 | 2007-07-26 | Fuller Edward N | Microvalve device suitable for controlling a variable displacement compressor |
US20070251586A1 (en) * | 2003-11-24 | 2007-11-01 | Fuller Edward N | Electro-pneumatic control valve with microvalve pilot |
US20070289941A1 (en) * | 2004-03-05 | 2007-12-20 | Davies Brady R | Selective Bonding for Forming a Microvalve |
US20080042084A1 (en) * | 2004-02-27 | 2008-02-21 | Edward Nelson Fuller | Hybrid Micro/Macro Plate Valve |
US20080047622A1 (en) * | 2003-11-24 | 2008-02-28 | Fuller Edward N | Thermally actuated microvalve with multiple fluid ports |
US20090123300A1 (en) * | 2005-01-14 | 2009-05-14 | Alumina Micro Llc | System and method for controlling a variable displacement compressor |
US20100019177A1 (en) * | 2006-12-15 | 2010-01-28 | Luckevich Mark S | Microvalve device |
US20110127455A1 (en) * | 2008-08-09 | 2011-06-02 | Microstaq, Inc. | Improved Microvalve Device |
US8113482B2 (en) | 2008-08-12 | 2012-02-14 | DunAn Microstaq | Microvalve device with improved fluid routing |
US8387659B2 (en) | 2007-03-31 | 2013-03-05 | Dunan Microstaq, Inc. | Pilot operated spool valve |
US8393344B2 (en) | 2007-03-30 | 2013-03-12 | Dunan Microstaq, Inc. | Microvalve device with pilot operated spool valve and pilot microvalve |
US8540207B2 (en) | 2008-12-06 | 2013-09-24 | Dunan Microstaq, Inc. | Fluid flow control assembly |
US8593811B2 (en) | 2009-04-05 | 2013-11-26 | Dunan Microstaq, Inc. | Method and structure for optimizing heat exchanger performance |
US8925793B2 (en) | 2012-01-05 | 2015-01-06 | Dunan Microstaq, Inc. | Method for making a solder joint |
US8956884B2 (en) | 2010-01-28 | 2015-02-17 | Dunan Microstaq, Inc. | Process for reconditioning semiconductor surface to facilitate bonding |
US8996141B1 (en) | 2010-08-26 | 2015-03-31 | Dunan Microstaq, Inc. | Adaptive predictive functional controller |
US9006844B2 (en) | 2010-01-28 | 2015-04-14 | Dunan Microstaq, Inc. | Process and structure for high temperature selective fusion bonding |
US9140613B2 (en) | 2012-03-16 | 2015-09-22 | Zhejiang Dunan Hetian Metal Co., Ltd. | Superheat sensor |
US9188375B2 (en) | 2013-12-04 | 2015-11-17 | Zhejiang Dunan Hetian Metal Co., Ltd. | Control element and check valve assembly |
US9702481B2 (en) | 2009-08-17 | 2017-07-11 | Dunan Microstaq, Inc. | Pilot-operated spool valve |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4316175A1 (en) * | 1993-05-14 | 1994-11-17 | Daimler Benz Ag | Soldered connection and soldering method |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3031747A (en) * | 1957-12-31 | 1962-05-01 | Tung Sol Electric Inc | Method of forming ohmic contact to silicon |
US3729807A (en) * | 1970-10-30 | 1973-05-01 | Matsushita Electronics Corp | Method of making thermo-compression-bonded semiconductor device |
DE2215526A1 (en) * | 1972-03-30 | 1973-10-04 | Licentia Gmbh | Metal contact for semiconductors - with consecutive chromium, chromium/nickel, nickel and gold layers, is junction-free |
US3860949A (en) * | 1973-09-12 | 1975-01-14 | Rca Corp | Semiconductor mounting devices made by soldering flat surfaces to each other |
US4005454A (en) * | 1975-04-05 | 1977-01-25 | Semikron Gesellschaft Fur Gleichrichterbau Und Elektronik M.B.H. | Semiconductor device having a solderable contacting coating on its opposite surfaces |
US4019388A (en) * | 1976-03-11 | 1977-04-26 | Bailey Meter Company | Glass to metal seal |
US4023725A (en) * | 1974-03-04 | 1977-05-17 | U.S. Philips Corporation | Semiconductor device manufacture |
US4152540A (en) * | 1977-05-03 | 1979-05-01 | American Pacemaker Corporation | Feedthrough connector for implantable cardiac pacer |
US4181249A (en) * | 1977-08-26 | 1980-01-01 | Hughes Aircraft Company | Eutectic die attachment method for integrated circuits |
DE2930779A1 (en) * | 1978-07-28 | 1980-02-07 | Tokyo Shibaura Electric Co | Contact layer for semiconductor chip - consists of three or four metal layers giving firm bond and including gold-germanium alloy layer for soldering |
US4341816A (en) * | 1979-08-21 | 1982-07-27 | Siemens Aktiengesellschaft | Method for attaching disc- or plate-shaped targets to cooling plates for sputtering systems |
DE3401404A1 (en) * | 1984-01-17 | 1985-07-25 | Robert Bosch Gmbh, 7000 Stuttgart | SEMICONDUCTOR COMPONENT |
US4647013A (en) * | 1985-02-21 | 1987-03-03 | Ford Motor Company | Silicon valve |
US4772935A (en) * | 1984-12-19 | 1988-09-20 | Fairchild Semiconductor Corporation | Die bonding process |
GB2238267A (en) * | 1989-11-01 | 1991-05-29 | Stc Plc | Brazing process |
US5027997A (en) * | 1990-04-05 | 1991-07-02 | Hughes Aircraft Company | Silicon chip metallization system |
US5037778A (en) * | 1989-05-12 | 1991-08-06 | Intel Corporation | Die attach using gold ribbon with gold/silicon eutectic alloy cladding |
-
1991
- 1991-03-09 DE DE4107660A patent/DE4107660C2/en not_active Expired - Fee Related
-
1992
- 1992-02-24 US US07/840,327 patent/US5215244A/en not_active Expired - Fee Related
- 1992-03-06 GB GB9204961A patent/GB2254278B/en not_active Expired - Fee Related
- 1992-03-09 JP JP4050360A patent/JPH0599347A/en active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3031747A (en) * | 1957-12-31 | 1962-05-01 | Tung Sol Electric Inc | Method of forming ohmic contact to silicon |
US3729807A (en) * | 1970-10-30 | 1973-05-01 | Matsushita Electronics Corp | Method of making thermo-compression-bonded semiconductor device |
DE2215526A1 (en) * | 1972-03-30 | 1973-10-04 | Licentia Gmbh | Metal contact for semiconductors - with consecutive chromium, chromium/nickel, nickel and gold layers, is junction-free |
US3860949A (en) * | 1973-09-12 | 1975-01-14 | Rca Corp | Semiconductor mounting devices made by soldering flat surfaces to each other |
US4023725A (en) * | 1974-03-04 | 1977-05-17 | U.S. Philips Corporation | Semiconductor device manufacture |
US4005454A (en) * | 1975-04-05 | 1977-01-25 | Semikron Gesellschaft Fur Gleichrichterbau Und Elektronik M.B.H. | Semiconductor device having a solderable contacting coating on its opposite surfaces |
US4019388A (en) * | 1976-03-11 | 1977-04-26 | Bailey Meter Company | Glass to metal seal |
US4152540A (en) * | 1977-05-03 | 1979-05-01 | American Pacemaker Corporation | Feedthrough connector for implantable cardiac pacer |
US4181249A (en) * | 1977-08-26 | 1980-01-01 | Hughes Aircraft Company | Eutectic die attachment method for integrated circuits |
DE2930779A1 (en) * | 1978-07-28 | 1980-02-07 | Tokyo Shibaura Electric Co | Contact layer for semiconductor chip - consists of three or four metal layers giving firm bond and including gold-germanium alloy layer for soldering |
US4341816A (en) * | 1979-08-21 | 1982-07-27 | Siemens Aktiengesellschaft | Method for attaching disc- or plate-shaped targets to cooling plates for sputtering systems |
DE3401404A1 (en) * | 1984-01-17 | 1985-07-25 | Robert Bosch Gmbh, 7000 Stuttgart | SEMICONDUCTOR COMPONENT |
US4661835A (en) * | 1984-01-17 | 1987-04-28 | Robert Bosch Gmbh | Semiconductor structure and method of its manufacture |
US4772935A (en) * | 1984-12-19 | 1988-09-20 | Fairchild Semiconductor Corporation | Die bonding process |
US4647013A (en) * | 1985-02-21 | 1987-03-03 | Ford Motor Company | Silicon valve |
US5037778A (en) * | 1989-05-12 | 1991-08-06 | Intel Corporation | Die attach using gold ribbon with gold/silicon eutectic alloy cladding |
GB2238267A (en) * | 1989-11-01 | 1991-05-29 | Stc Plc | Brazing process |
US5027997A (en) * | 1990-04-05 | 1991-07-02 | Hughes Aircraft Company | Silicon chip metallization system |
Non-Patent Citations (6)
Title |
---|
Carpenter Technology Corporation, "Kovar Alloy", 3 page data sheet, dated Oct. 1990. |
Carpenter Technology Corporation, Kovar Alloy , 3 page data sheet, dated Oct. 1990. * |
R. K. Shukla, "A Critical Review of VLSI Die-Attachment in High Reliability Applications" in Solid State Technology, Jul. 1985, pp. 67-74. |
R. K. Shukla, A Critical Review of VLSI Die Attachment in High Reliability Applications in Solid State Technology, Jul. 1985, pp. 67 74. * |
Taylor Lyman, "Metals Handbook", 1948 Edition, p. 604. |
Taylor Lyman, Metals Handbook , 1948 Edition, p. 604. * |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6014374A (en) | 1985-03-20 | 2000-01-11 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
US5657358A (en) | 1985-03-20 | 1997-08-12 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or plurality of RF channels |
US6771667B2 (en) | 1985-03-20 | 2004-08-03 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
US5687194A (en) | 1985-03-20 | 1997-11-11 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
US5734678A (en) | 1985-03-20 | 1998-03-31 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
US6393002B1 (en) | 1985-03-20 | 2002-05-21 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
US6282180B1 (en) | 1985-03-20 | 2001-08-28 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
US5842137A (en) * | 1986-08-07 | 1998-11-24 | Interdigital Technology Corporation | Subscriber unit for wireless digital telephone system |
US20030076802A1 (en) * | 1993-09-30 | 2003-04-24 | Interdigital Technology Corporation | Modularly clustered radiotelephone system |
US6496488B1 (en) | 1993-09-30 | 2002-12-17 | Interdigital Technology Corporation | Modularly clustered radiotelephone system |
US6208630B1 (en) | 1993-09-30 | 2001-03-27 | Interdigital Technology Corporation | Modulary clustered radiotelephone system |
US5852604A (en) | 1993-09-30 | 1998-12-22 | Interdigital Technology Corporation | Modularly clustered radiotelephone system |
US5377900A (en) * | 1993-12-29 | 1995-01-03 | At&T Corp. | Method of precisely positioning and mating two workpieces |
US5678304A (en) * | 1996-07-24 | 1997-10-21 | Eastman Kodak Company | Method for manufacturing double-sided circuit assemblies |
US7367359B2 (en) | 1998-09-03 | 2008-05-06 | Kelsey-Hayes Company | Proportional micromechanical valve |
US7011378B2 (en) | 1998-09-03 | 2006-03-14 | Ge Novasensor, Inc. | Proportional micromechanical valve |
US6523560B1 (en) | 1998-09-03 | 2003-02-25 | General Electric Corporation | Microvalve with pressure equalization |
US6761420B2 (en) | 1998-09-03 | 2004-07-13 | Ge Novasensor | Proportional micromechanical device |
US20050156129A1 (en) * | 1998-09-03 | 2005-07-21 | General Electric Company | Proportional micromechanical valve |
US6994115B2 (en) | 2000-03-22 | 2006-02-07 | Kelsey-Hayes Company | Thermally actuated microvalve device |
US20050121090A1 (en) * | 2000-03-22 | 2005-06-09 | Hunnicutt Harry A. | Thermally actuated microvalve device |
US6505811B1 (en) | 2000-06-27 | 2003-01-14 | Kelsey-Hayes Company | High-pressure fluid control valve assembly having a microvalve device attached to fluid distributing substrate |
US20070251586A1 (en) * | 2003-11-24 | 2007-11-01 | Fuller Edward N | Electro-pneumatic control valve with microvalve pilot |
US8011388B2 (en) | 2003-11-24 | 2011-09-06 | Microstaq, INC | Thermally actuated microvalve with multiple fluid ports |
US20070172362A1 (en) * | 2003-11-24 | 2007-07-26 | Fuller Edward N | Microvalve device suitable for controlling a variable displacement compressor |
US20080047622A1 (en) * | 2003-11-24 | 2008-02-28 | Fuller Edward N | Thermally actuated microvalve with multiple fluid ports |
US20080042084A1 (en) * | 2004-02-27 | 2008-02-21 | Edward Nelson Fuller | Hybrid Micro/Macro Plate Valve |
US20070289941A1 (en) * | 2004-03-05 | 2007-12-20 | Davies Brady R | Selective Bonding for Forming a Microvalve |
US7803281B2 (en) | 2004-03-05 | 2010-09-28 | Microstaq, Inc. | Selective bonding for forming a microvalve |
US7156365B2 (en) | 2004-07-27 | 2007-01-02 | Kelsey-Hayes Company | Method of controlling microvalve actuator |
US20060022160A1 (en) * | 2004-07-27 | 2006-02-02 | Fuller Edward N | Method of controlling microvalve actuator |
US20090123300A1 (en) * | 2005-01-14 | 2009-05-14 | Alumina Micro Llc | System and method for controlling a variable displacement compressor |
US20060200988A1 (en) * | 2005-03-11 | 2006-09-14 | Siemens Vdo Automotive Corporation | Sandwich orifice disc |
WO2006099368A1 (en) * | 2005-03-11 | 2006-09-21 | Siemens Vdo Automotive Corporation | Sandwich orifice disc |
US8156962B2 (en) | 2006-12-15 | 2012-04-17 | Dunan Microstaq, Inc. | Microvalve device |
US20100019177A1 (en) * | 2006-12-15 | 2010-01-28 | Luckevich Mark S | Microvalve device |
US8393344B2 (en) | 2007-03-30 | 2013-03-12 | Dunan Microstaq, Inc. | Microvalve device with pilot operated spool valve and pilot microvalve |
US8387659B2 (en) | 2007-03-31 | 2013-03-05 | Dunan Microstaq, Inc. | Pilot operated spool valve |
US8662468B2 (en) | 2008-08-09 | 2014-03-04 | Dunan Microstaq, Inc. | Microvalve device |
US20110127455A1 (en) * | 2008-08-09 | 2011-06-02 | Microstaq, Inc. | Improved Microvalve Device |
US8113482B2 (en) | 2008-08-12 | 2012-02-14 | DunAn Microstaq | Microvalve device with improved fluid routing |
US8540207B2 (en) | 2008-12-06 | 2013-09-24 | Dunan Microstaq, Inc. | Fluid flow control assembly |
US8593811B2 (en) | 2009-04-05 | 2013-11-26 | Dunan Microstaq, Inc. | Method and structure for optimizing heat exchanger performance |
US9702481B2 (en) | 2009-08-17 | 2017-07-11 | Dunan Microstaq, Inc. | Pilot-operated spool valve |
US8956884B2 (en) | 2010-01-28 | 2015-02-17 | Dunan Microstaq, Inc. | Process for reconditioning semiconductor surface to facilitate bonding |
US9006844B2 (en) | 2010-01-28 | 2015-04-14 | Dunan Microstaq, Inc. | Process and structure for high temperature selective fusion bonding |
US8996141B1 (en) | 2010-08-26 | 2015-03-31 | Dunan Microstaq, Inc. | Adaptive predictive functional controller |
US8925793B2 (en) | 2012-01-05 | 2015-01-06 | Dunan Microstaq, Inc. | Method for making a solder joint |
US9404815B2 (en) | 2012-03-16 | 2016-08-02 | Zhejiang Dunan Hetian Metal Co., Ltd. | Superheat sensor having external temperature sensor |
US9140613B2 (en) | 2012-03-16 | 2015-09-22 | Zhejiang Dunan Hetian Metal Co., Ltd. | Superheat sensor |
US9772235B2 (en) | 2012-03-16 | 2017-09-26 | Zhejiang Dunan Hetian Metal Co., Ltd. | Method of sensing superheat |
US9188375B2 (en) | 2013-12-04 | 2015-11-17 | Zhejiang Dunan Hetian Metal Co., Ltd. | Control element and check valve assembly |
Also Published As
Publication number | Publication date |
---|---|
GB2254278B (en) | 1994-08-03 |
JPH0599347A (en) | 1993-04-20 |
GB2254278A (en) | 1992-10-07 |
DE4107660C2 (en) | 1995-05-04 |
GB9204961D0 (en) | 1992-04-22 |
DE4107660A1 (en) | 1992-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5215244A (en) | Method of mounting silicon wafers on metallic mounting surfaces | |
US6074104A (en) | Method for hermetically sealing optical fiber introducing section and hermetically sealed structure | |
JP5570811B2 (en) | Heat-resistant solid state pressure sensor | |
US7427808B2 (en) | Micro-sensor | |
US5181417A (en) | Pressure detecting device | |
JPH08178778A (en) | Semiconductor pressure detector | |
EP0427261A2 (en) | Semiconductor pressure sensor connected to a support element | |
JPH044996B2 (en) | ||
US5528214A (en) | Pressure-adjusting device for adjusting output of integrated pressure sensor | |
EP0490166B1 (en) | Quick cooldown/low distortion hybrid focal plane array platform for use in infrared detector dewar packages | |
JPH08193897A (en) | Semiconductor pressure sensor | |
JPH0222540B2 (en) | ||
US4680569A (en) | Semiconductor pressure sensor | |
US5761957A (en) | Semiconductor pressure sensor that suppresses non-linear temperature characteristics | |
US4319397A (en) | Method of producing semiconductor displacement transducer | |
JPH01169333A (en) | Semiconductor pressure transducer | |
JP2000180282A (en) | Semiconductor pressure sensor | |
KR930002280B1 (en) | Semiconductor circuit device contact system | |
EP1029227B1 (en) | Device for performing pressure measurements in a space by means of a chip | |
JPH0566979B2 (en) | ||
JPS6097678A (en) | Method of mounting semiconductor structure part on surface of substrate | |
JPH03252155A (en) | Semiconductor package | |
JPH0574776A (en) | Mounting structure of semiconductor device | |
JP3745828B2 (en) | Package for optical semiconductor devices | |
JPH0629444A (en) | Method of brazing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BUCHHOLZ, JUERGEN;TRAH, HANS-PETER;KLUCKEN, WOLFGANG;REEL/FRAME:006029/0426;SIGNING DATES FROM 19920217 TO 19920218 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20010601 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |