US5484773A - Treatment of antibiotic associated diarrhea - Google Patents
Treatment of antibiotic associated diarrhea Download PDFInfo
- Publication number
- US5484773A US5484773A US08/195,009 US19500994A US5484773A US 5484773 A US5484773 A US 5484773A US 19500994 A US19500994 A US 19500994A US 5484773 A US5484773 A US 5484773A
- Authority
- US
- United States
- Prior art keywords
- toxin
- oligosaccharide
- composition
- group
- oligosaccharide sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 206010012735 Diarrhoea Diseases 0.000 title claims abstract description 23
- 101710084578 Short neurotoxin 1 Proteins 0.000 claims abstract description 128
- 101710182532 Toxin a Proteins 0.000 claims abstract description 128
- 150000002482 oligosaccharides Chemical class 0.000 claims abstract description 90
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 239000007787 solid Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 31
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 18
- 125000001151 peptidyl group Chemical group 0.000 claims description 12
- 150000001720 carbohydrates Chemical group 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 4
- 230000001404 mediated effect Effects 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims 1
- 229920001542 oligosaccharide Polymers 0.000 abstract description 25
- 238000006386 neutralization reaction Methods 0.000 abstract description 22
- 241000193163 Clostridioides difficile Species 0.000 abstract description 21
- 208000003100 Pseudomembranous Enterocolitis Diseases 0.000 abstract description 21
- 206010037128 Pseudomembranous colitis Diseases 0.000 abstract description 20
- 206010009657 Clostridium difficile colitis Diseases 0.000 abstract description 19
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 41
- 230000000694 effects Effects 0.000 description 28
- 108010005774 beta-Galactosidase Proteins 0.000 description 26
- 230000027455 binding Effects 0.000 description 19
- 239000000523 sample Substances 0.000 description 18
- 125000005647 linker group Chemical group 0.000 description 17
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 16
- 239000003053 toxin Substances 0.000 description 15
- 231100000765 toxin Toxicity 0.000 description 15
- 108700012359 toxins Proteins 0.000 description 15
- 101000718529 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) Alpha-galactosidase Proteins 0.000 description 13
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 13
- -1 8-methoxycarbonyloctyl Chemical group 0.000 description 11
- 238000003556 assay Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000035931 haemagglutination Effects 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 230000003115 biocidal effect Effects 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 108010017898 Shiga Toxins Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- DKVBOUDTNWVDEP-NJCHZNEYSA-N teicoplanin aglycone Chemical compound N([C@H](C(N[C@@H](C1=CC(O)=CC(O)=C1C=1C(O)=CC=C2C=1)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)OC=1C=C3C=C(C=1O)OC1=CC=C(C=C1Cl)C[C@H](C(=O)N1)NC([C@H](N)C=4C=C(O5)C(O)=CC=4)=O)C(=O)[C@@H]2NC(=O)[C@@H]3NC(=O)[C@@H]1C1=CC5=CC(O)=C1 DKVBOUDTNWVDEP-NJCHZNEYSA-N 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 210000002919 epithelial cell Anatomy 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000000968 intestinal effect Effects 0.000 description 5
- 210000000936 intestine Anatomy 0.000 description 5
- 239000003456 ion exchange resin Substances 0.000 description 5
- 229920003303 ion-exchange polymer Polymers 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 101710182223 Toxin B Proteins 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 229930182470 glycoside Natural products 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000024033 toxin binding Effects 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 241000699802 Cricetulus griseus Species 0.000 description 3
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 3
- 101710146739 Enterotoxin Proteins 0.000 description 3
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 3
- 108010015899 Glycopeptides Proteins 0.000 description 3
- 102000002068 Glycopeptides Human genes 0.000 description 3
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108010059993 Vancomycin Proteins 0.000 description 3
- KFEUJDWYNGMDBV-RPHKZZMBSA-N beta-D-Galp-(1->4)-D-GlcpNAc Chemical group O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KFEUJDWYNGMDBV-RPHKZZMBSA-N 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 239000000147 enterotoxin Substances 0.000 description 3
- 231100000655 enterotoxin Toxicity 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 229960003082 galactose Drugs 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229960000282 metronidazole Drugs 0.000 description 3
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 229960003165 vancomycin Drugs 0.000 description 3
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 3
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010004016 Bacterial diarrhoea Diseases 0.000 description 2
- 101710112752 Cytotoxin Proteins 0.000 description 2
- 206010013911 Dysgeusia Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 2
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 244000005709 gut microbiome Species 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 230000000503 lectinlike effect Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 229950006780 n-acetylglucosamine Drugs 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Chemical group 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000007888 toxin activity Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- UPQQXPKAYZYUKO-UHFFFAOYSA-N 2,2,2-trichloroacetamide Chemical compound OC(=N)C(Cl)(Cl)Cl UPQQXPKAYZYUKO-UHFFFAOYSA-N 0.000 description 1
- 125000005999 2-bromoethyl group Chemical group 0.000 description 1
- 108020005096 28S Ribosomal RNA Proteins 0.000 description 1
- NALREUIWICQLPS-UHFFFAOYSA-N 7-imino-n,n-dimethylphenothiazin-3-amine;hydrochloride Chemical compound [Cl-].C1=C(N)C=C2SC3=CC(=[N+](C)C)C=CC3=NC2=C1 NALREUIWICQLPS-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001268 Cholestyramine Polymers 0.000 description 1
- 229920002911 Colestipol Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 206010012741 Diarrhoea haemorrhagic Diseases 0.000 description 1
- 206010014896 Enterocolitis haemorrhagic Diseases 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 208000032759 Hemolytic-Uremic Syndrome Diseases 0.000 description 1
- 101000662009 Homo sapiens UDP-N-acetylglucosamine pyrophosphorylase Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 238000006994 Koenigs-Knorr glycosidation reaction Methods 0.000 description 1
- PNIWLNAGKUGXDO-UHFFFAOYSA-N Lactosamine Natural products OC1C(N)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 PNIWLNAGKUGXDO-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 229930182475 S-glycoside Natural products 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102100037921 UDP-N-acetylglucosamine pyrophosphorylase Human genes 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- NNISLDGFPWIBDF-MPRBLYSKSA-N alpha-D-Gal-(1->3)-beta-D-Gal-(1->4)-D-GlcNAc Chemical group O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@@H](CO)O1 NNISLDGFPWIBDF-MPRBLYSKSA-N 0.000 description 1
- SRHNADOZAAWYLV-XLMUYGLTSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](NC(C)=O)[C@H](O)O[C@@H]2CO)O[C@H]2[C@H]([C@H](O)[C@H](O)[C@H](C)O2)O)O[C@H](CO)[C@H](O)[C@@H]1O SRHNADOZAAWYLV-XLMUYGLTSA-N 0.000 description 1
- SNFSYLYCDAVZGP-OHWKOEMOSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->4)-beta-D-Glcp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@@H]2[C@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)O[C@H](CO)[C@H](O)[C@@H]1O SNFSYLYCDAVZGP-OHWKOEMOSA-N 0.000 description 1
- PHTAQVMXYWFMHF-QVPNGJTFSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->4)-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@@H]2[C@H](O[C@@H](O)[C@H](NC(C)=O)[C@H]2O)CO)O[C@H](CO)[C@H](O)[C@@H]1O PHTAQVMXYWFMHF-QVPNGJTFSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- GMRWGQCZJGVHKL-UHFFFAOYSA-N colestipol Chemical compound ClCC1CO1.NCCNCCNCCNCCN GMRWGQCZJGVHKL-UHFFFAOYSA-N 0.000 description 1
- 229960002604 colestipol Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000008951 colonic inflammation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007821 culture assay Methods 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000000386 donor Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000002095 exotoxin Substances 0.000 description 1
- 231100000776 exotoxin Toxicity 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000002637 fluid replacement therapy Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108010008385 glycolipid receptor Proteins 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 239000000348 glycosyl donor Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- DOVBXGDYENZJBJ-ONMPCKGSSA-N lactosamine Chemical compound O=C[C@H](N)[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O DOVBXGDYENZJBJ-ONMPCKGSSA-N 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- ZHCAAFJSYLFLPX-UHFFFAOYSA-N nitrocyclohexatriene Chemical group [O-][N+](=O)C1=CC=C=C[CH]1 ZHCAAFJSYLFLPX-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Chemical group 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 150000003214 pyranose derivatives Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012898 sample dilution Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 150000003569 thioglycosides Chemical class 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/33—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
Definitions
- This invention relates to treatment of antibiotic associated diarrhea, including Clostridium difficile associated diarrhea (CDAD) and pseudomembranous colitis (PMC). More specifically, the invention concerns neutralization of C. difficile toxin A associated with CDAD.
- CDAD Clostridium difficile associated diarrhea
- PMC pseudomembranous colitis
- Clostridium difficile is the major causative agent of antibiotic-associated bacterial diarrhea and pseudomembranous colitis (PMC) among mainly elderly patients in hospitals and long term care facilities [1,2].
- PMC pseudomembranous colitis
- the organism cannot compete successfully with the normal microbial flora in the adult colon, but when the normal intestinal microflora is altered, for example by antibiotic treatment, C. difficile is able to colonize the gut in high numbers.
- Antibiotic therapy accounts for 98% of all cases of C. difficile associated diarrhea (CDAD).
- CDAD C. difficile associated diarrhea
- any predisposing condition which alters the normal intestinal flora including any condition which requires extensive immunosuppressive treatment, can also lead to the development of CDAD.
- AIDS patients are also high risk candidates for acquiring CDAD [3,4].
- C. difficile produces two exotoxins, toxin A (an enterotoxin) and toxin B (a cytotoxin) which appear to play important roles in causing CDAD.
- Toxin A is primarily responsible for the disease. It acts by binding to epithelial cells in the intestine, resulting in the destruction of these cells and causing the secretion of fluid into the intestine. The destruction of these protective epithelial cells by toxin A represents the crucial step leading to the development of diarrhea. Once damage has occurred to the epithelial cells, the potent cytotoxin B can then gain access to underlying sensitive tissues and initiate additional clinical symptoms.
- Toxin A has been found to display a lectin-like activity which allows it to bind to an oligosaccharide receptor on epithelial cells.
- oligosaccharide sequences have been identified as potential receptors for toxin A, and include the following structures [5-7]:
- toxin A preparations have been obtained using bovine thyroglobulin affinity columns which have terminal ⁇ Gal(1-3) ⁇ Gal(1-4) ⁇ GlcNAc oligosaccharide sequences [8,9].
- the current therapy for patients who suffer from CDAD or PMC is to remove the offending drug and begin oral administration of the antibiotics Metronidazole or Vancomycin along with fluid replacement [3,14]. Vancomycin is only used in certain situations when patients cannot tolerate or are not responsive to Metronidazole treatment. In addition, Vancomycin is not used routinely because of its high cost. This form of therapy is effective in about 80% of the patients who suffer from CDAD or PMC. In about 20% of patients, the diarrhea returns after discontinuing antibiotic treatment [15]. In such individuals, episodes continue to recur until the normal intestinal flora is reestablished and the numbers of C. difficile organisms are reduced. This is a slow process, since antibiotics such as Metronidazole, which disturb the balance of the normal intestinal flora, are administered each time the diarrhea occurs.
- one method for detecting C. difficile in a sample is to culture the sample.
- the disadvantages of this method include the length of time required and interference by non-pathogenic, i.e. non-toxin producing, C. difficile strains.
- Other methods involve the use of specific antisera or monoclonal antibodies.
- U.S. Pat. Nos. 4,863,852 and 5,098,826 describe methods for detecting C. difficile toxin A by the use of reagents containing biological receptors for toxin A, including the ⁇ Gal(1-3) ⁇ Gal(1-4) ⁇ GlcNAc, X and Y antigen oligosaccharide sequences, bound to a support.
- a preferred compound which would treat antibiotic associated diarrhea.
- a preferred compound would be administered noninvasively, such as orally.
- the invention provides compositions and methods for the treatment of antibiotic associated diarrhea caused by Clostridium difficile.
- the invention provides a method to bind and remove toxin A from a sample suspected of containing said toxin A, which method comprises contacting said sample with an oligosaccharide sequence covalently attached to a solid, inert support through a non-peptidyl compatible linker arm, wherein said oligosaccharide sequence binds toxin A, under conditions wherein said toxin A is absorbed to said support; and separating the support containing the absorbed toxin A from the sample.
- the invention provides a method to treat diarrhea mediated by toxin A in a subject, which method comprises administering to a subject in need of such treatment an effective amount of a composition comprising an oligosaccharide sequence covalently attached to a pharmaceutically acceptable solid, inert support through a non-peptidyl compatible linker arm, wherein said oligosaccharide sequence binds toxin A, and wherein said composition is capable of being eliminated from the gastrointestinal tract.
- the invention provides a pharmaceutical composition useful in treating CDAD and related conditions initiated by toxin A, which composition comprises an oligosaccharide sequence covalently attached to a pharmaceutically acceptable solid, inert support through a non-peptidyl compatible linker arm, wherein said oligosaccharide sequence binds toxin A; and a pharmaceutically acceptable carrier, wherein said composition is capable of being eliminated from the gastrointestinal tract.
- FIG. 1 demonstrates the neutralization of purified toxin A hemagglutination activity using a panel of SYNSORBs containing various oligosaccharide sequences. Several SYNSORBs were found to effectively neutralize toxin A activity.
- FIG. 2 illustrates the concentration dependent neutralization of toxin A activity using SYNSORB 52 and 90. Both SYNSORBs can effectively neutralize more than about 75% of toxin A activity at a concentration of 20 mg/ml.
- FIG. 3 demonstrates the time dependency of neutralization of toxin A activity using SYNSORB 52 and 90 at a concentration of 20 mg/ml.
- FIG. 4 illustrates the binding affinity of several SYNSORBs for toxin A. Different SYNSORBs were found to have different binding affinities for the toxin.
- Antibiotic-associated bacterial diarrhea refers to the condition wherein antibiotic therapy disturbs the balance of the microbiol flora of the gut, allowing pathogenic organisms such as Clostridium difficile to flourish. These organisms cause diarrhea.
- Antibiotic-associated bacterial diarrhea includes such conditions as Clostridium difficile associated diarrhea (CDAD) and pseudomembranous colitis (PMC).
- biocompatible refers to chemical inertness with respect to human tissues or body fluids.
- compatible linker arm refers to a moiety which serves to space the oligosaccharide structure from the biocompatible solid support and which is biofunctional wherein one functional group is capable of binding to a reciprocal functional group of the support and the other functional group is capable of binding to a reciprocal functional group of the oligosaccharide structure.
- Compatible linker arms preferred in the present invention are non-peptidyl spacer arms.
- PMC pseudomembranous colitis
- enteritis refers to the inflammation of the mucous membrane of both small and large intestine with the formation and passage of pseudomembranous material (composed of fibrin, mucous, necrotic epithelial cells and leukocytes) in the stools.
- solid support refers to an inert, solid material to which the oligosaccharide sequences may be bound via a compatible linker arm. Where use is in vivo, the solid support will be biocompatible.
- SYNSORB refers to synthetic 8-methoxycarbonyloctyl oligosaccharide structures covalently coupled to Chromosorb PTM (Manville Corp., Denver, Colo.) (12), which is a derivitized silica particle.
- toxin A refers to an enterotoxin of Clostridium difficile which initiates CDAD and related conditions. This toxin has a lectin-like activity.
- the chemical synthesis of all or part of the oligosaccharide glycosides first involves formation of a glycosidic linkage on the anomeric carbon atom of the reducing sugar or monosaccharide.
- an appropriately protected form of a naturally occurring or of a chemically modified saccharide structure (the glycosyl donor) is selectively modified at the anomeric center of the reducing unit so as to introduce a leaving group comprising halides, trichloroacetimidate, acetyl, thioglycoside, etc.
- the donor is then reacted under catalytic conditions well known in the art with an aglycon or an appropriate form of a carbohydrate acceptor which possesses one free hydroxyl group at the position where the glycosidic linkage is to be established.
- aglycon moieties are known in the art and can be attached with the proper configuration to the anomeric center of the reducing unit.
- the saccharide glycoside can be used to effect coupling of additional saccharide unit(s) or chemically modified at selected positions or, after conventional deprotection, used in an enzymatic synthesis.
- chemical coupling of a naturally occurring or chemically modified saccharide unit to the saccharide glycoside is accomplished by employing established chemistry well documented in the literature [21-37].
- the solid supports to which the oligosaccharide structures of the present invention are bound may be in the form of sheets or particles.
- a large variety of biocompatible solid support materials are known in the art. Examples thereof are silica, synthetic silicates such as porous glass, biogenic silicates such as diatomaceous earth, silicate-containing minerals such as kaolinite, and synthetic polymers such as polystyrene, polypropylene, and polysaccharides.
- the solid supports have a particle size of from about 10 to 500 microns for in vivo use. In particular, particle sizes of 100 to 200 microns are preferred.
- the oligosaccharide structure(s) is covalently bound or noncovalently (passively) adsorbed onto the solid support.
- the covalent bonding may be via reaction between functional groups on the support and the compatible linker arm of the oligosaccharide structure. It has unexpectedly been found that attachment of the oligosaccharide structure to the biocompatible solid support through a compatible linking arm provides a product which, notwithstanding the solid support, effectively removes toxin.
- Linking moieties that are used in indirect bonding are preferably organic biofunctional molecules of appropriate length (at least one carbon atom) which serve simply to distance the oligosaccharide structure from the surface of the solid support.
- compositions of this invention are preferably represented by the formula:
- OLIGOSACCHARIDE represents an oligosaccharide group of at least 2 sugar units which group binds to toxin A
- Y is oxygen, sulfur or nitrogen
- R is an aglycon linking arm of at least 1 carbon atom
- SOLID SUPPORT is as defined above
- n is an integer greater than or equal to 1. Oligosaccharide sequences containing about 2 to 10 saccharide units may be used. Sequences with about 3 to 5 saccharide units are preferred.
- linking arms are known in the art.
- a linking arm comprising a para-nitrophenyl group (i.e., --OC 6 H 4 pNO 2 ) has been disclosed [38].
- the nitro group is reduced to an amino group which can be protected as N-trifluoroacetamido.
- the trifluoroacetamido group is removed thereby unmasking the amino group.
- linking arm containing sulfur has been disclosed [39]. Specifically, the linking arm is derived from a 2-bromoethyl group which, in a substitution reaction with thionucleophiles, has been shown to lead to linking arms possessing a variety of terminal functional groups such as --OCH 2 CH 2 SCH 2 CO 2 CH 3 and --OCH 2 CH 2 SC 6 H 4 --pNH 2 . These terminal functional groups permit reaction to complementary functional groups on the solid support, thereby forming a covalent linkage to the solid support. Such reactions are well known in the art.
- a 6-trifluoroacetamido-hexyl linking arm (--O--(CH 2 ) 6 --NHCOCF 3 ) has been disclosed [40] in which the trifluoroacetamido protecting group can be removed, unmasking the primary amino group used for coupling.
- linking arms include the 7-methoxycarbonyl-3,6,dioxaheptyl linking arm [41] (--OCH 2 --CH 2 ) 2 OCH 2 CO 2 CH 3 ); the 2-(4-methoxycarbonylbutancarboxamido)ethyl [42] (--OCH 2 CH 2 NHC(O)(CH 2 ) 4 CO 2 CH 3 ); the allyl linking arm [43] (--OCH 2 CH ⁇ CH 2 ) which, by radical co-polymerization with an appropriate monomer, leads to co-polymers; other allyl linking arms [44] are known [--O(CH 2 CH 2 O) 2 CH 2 CH ⁇ CH 2 ].
- allyl linking arms can be derivatized in the presence of 2-aminoethanethiol [45] to provide for a linking arm --OCH 2 CH 2 CH 2 SCH 2 CH 2 NH 2 .
- Other suitable linking arms have also been disclosed [21-23, 25, 26].
- the particular linking employed to covalently attach the oligosaccharide group to the solid support is not critical.
- the aglycon linking arm is a hydrophobic group and most preferably, the aglycon linking arm is a hydrophobic group selected from the group consisting of ##STR1##
- SYNSORB Chromosorb PTM
- a biocompatible solid support e.g., Chromosorb PTM
- SYNSORB is particularly preferred for these compositions because it is non-toxic and resistant to mechanical and chemical deposition.
- rats a widely accepted model for preclinical studies, since they are predictive of human response
- SYNSORBs have been found to pass unaffected through the rat gastrointestinal tract. They were found to be eliminated completely and rapidly (99% eliminated in 72 hours) following oral administration.
- oligosaccharide moieties on SYNSORB is particularly useful for binding toxin A, since the toxin is thought to possess multiple oligosaccharide binding sites [11].
- Non-peptidyl linking arms are preferred for use as the compatible linking arms of the present invention.
- glycopeptides are not desirable because glycopeptides contain several, often different, oligosaccharides linked to the same protein. Glycopeptides are also difficult to obtain in large amounts and require expensive and tedious purification.
- BSA or HSA conjugates is not desirable due to questionable stability in the gastrointestinal tract when given orally.
- Covalent attachment of an oligosaccharide group containing a toxin A binding unit through a non-peptidyl spacer arm to an inert solid support permits efficient binding and removal of toxin A from a sample to be analyzed for the presence of toxin A or from the intestine of a patient suffering from CDAD.
- the oligosaccharide is synthesized with this compatible linker arm attached (in non-derivatized form), highly pure compositions may be achieved which can be coupled to various solid supports.
- compositions comprising one or more oligosaccharide structures which bind toxin A attached to a solid support.
- compositions When used for oral administration, which is preferred, these compositions may be formulated in a variety of ways. It will preferably be in liquid or semisolid form. Compositions including a liquid pharmaceutically inert carrier such as water may be considered for oral administration. Other pharmaceutically compatible liquids or semisolids, may also be used. The use of such liquids and semisolids is well known to those of skill in the art.
- compositions which may be mixed with semisolid foods such as applesauce, ice cream or pudding may also be preferred.
- Formulations such as SYNSORBs, which do not have a disagreeable taste or aftertaste are preferred.
- a nasogastric tube may also be used to deliver the compositions directly into the stomach.
- Solid compositions may also be used, and may optionally and conveniently be used in formulations containing a pharmaceutically inert carrier, including conventional solid carriers such as lactose, starch, dextrin or magnesium stearate, which are conveniently presented in tablet or capsule form.
- a pharmaceutically inert carrier including conventional solid carriers such as lactose, starch, dextrin or magnesium stearate, which are conveniently presented in tablet or capsule form.
- the SYNSORB itself may also be used without the addition of inert pharmaceutical carriers, particularly for use in capsule form.
- Doses are selected to provide neutralization and elimination of the toxin A found in the gut of the effected patient.
- Useful doses are from about 0.25 to 1.25 micromoles of oligosaccharide/kg body weight/day, preferably about 0.5 to 1.0 micromoles of oligosaccharide/kg body weight/day.
- SYNSORB compositions this means about 0.5 to 1.0 gram SYNSORB/kg body weight/day, which gives a concentration of SYNSORB in the gut of about 20 mg/ml.
- Administration is expected to be 3 or 4 times daily, for a period of one week or until clinical symptoms are resolved.
- the dose level and schedule of administration may vary depending on the particular oligosaccharide structure used and such factors as the age and condition of the subject.
- Optimal time for complete removal of toxin A activity was found to be about 1 hour at 37° C., using a concentration of SYNSORB of 20 mg in 1 ml sample.
- oligosaccharide-containing compositions of the present invention during a period of up to seven days will be useful in treating CDAD and PMC.
- formulations may also be considered for other means of administration such as per rectum.
- the usefulness of these formulations may depend on the particular composition used and the particular subject receiving the treatment.
- These formulations may contain a liquid carrier that may be oily, aqueous, emulsified or contain certain solvents suitable to the mode of administration.
- compositions may be formulated in unit dose form, or in multiple or subunit doses.
- orally administered liquid compositions should preferably contain about 1 micromole oligosaccharide/ml.
- C. difficile toxin A may be neutralized by certain oligosaccharide sequences which bind the toxin.
- synthetic oligosaccharides covalently attached to solid supports via non-peptidyl compatible linker arms have been found to neutralize toxin A effectively.
- SYNSORBs which bind and neutralize toxin A activity.
- SYNSORBs 8-methoxylcarbonyloctyl
- oligosaccharide sequences attached to solid supports useful in the present invention are those which bind toxin A.
- the binding affinity of an oligosaccharide to toxin A is readily detectable by a simple in vitro test, as for example, set forth in Example 4 below.
- oligosaccharide sequences attached to solid supports which bind toxin A means those compositions which reduce endpoint titers from hemagglutination assays by at least 50%.
- SLTs are a group of cytoxins which are made up of two parts: an A subunit and a B oligomer.
- the B oligomer is the binding portion of the toxin that allows it to bind to host cell receptors.
- the SLT toxins bind to glycolipid receptors containing the ⁇ Gal(1-4) ⁇ Gal determinant.
- the A subunit has an enzymatic activity (N-glycosidase) that depurinates 28S ribosomal RNA in mammalian cells. This enzymatic activity abolishes the ability of the toxin-infected cell to perform protein synthesis.
- SLT The site for SLT action is endothelial cells found in the kidneys and mesenteric vasculature, and SLTs may cause damage that can result in renal failure and hemoglobin in the urine. SLTs are the causative agent in the hemolytic-uremic syndrome. SLTs may also be partially involved in the pathogenesis of hemorrhagic colitis (bloody diarrhea).
- toxin A is an enterotoxin that induces fluid secretion, mucosal damage and intestinal inflammation. It serves as a chemoattractant for human neutrophils. Toxin A is a single protein. It cause activation and results in the release of cytokines in monocytes. These inflammatory effects may play an important role in inducing the colonic inflammation seen in pseudomembranous colitis.
- Toxin A appears to bind to a glycoprotein receptor, the structure of which has yet to be determined. The mechanism of action is not totally understood, but toxin A is thought to enter cells via receptor-mediated endocytosis and affect the actin cytoskeleton of the cell. The toxin A receptor is thought to be linked to a guanine regulatory protein. Toxin A is the first step in the production of CDAD and PMC.
- toxin A Previous studies defining the oligosaccharide binding specificity of toxin A have identified several structural requirements for toxin binding [5-7]. Oligosaccharides which terminate in the ⁇ -Gal(1-3) ⁇ Gal sequences attached to the type 2 core ( ⁇ Gal(1-4) ⁇ GlcNAc) have been shown to be important for binding. In addition, toxin A also recognizes oligosaccharides with fucose attached to the 2 hydroxyl of galactose or the 3 hydroxyl of N-acetylglucosamine of the type 2 core.
- the SYNSORBs chosen for toxin neutralization studies include carbohydrates which incorporate these structural features as well as other oligosaccharides which encompass the type 6 ( ⁇ Gal(1-4) ⁇ Glc) and type 1( ⁇ Gal(1-3) ⁇ GlcNAc) core structures. Additional SYNSORBs selected for binding studies contain oligosaccharide sequences previously shown to bind to toxin A.
- the amount of toxin A adsorption to SYNSORB was determined by assaying supernatants for reduction of endpoint titers in hemagglutination assays relative to controls without any added SYNSORB. Results are shown in FIG. 1. Those SYNSORBs which possessed the X, Y, and ⁇ Gal(1-3) ⁇ Gal(1-4) ⁇ GlcNAc oligosaccharide sequences (SYNSORBs 51, 52, and 115) were found to effectively remove toxin A activity by 75, 88, and 88%, respectively.
- SYNSORBs 9 and 90 were as effective at neutralizing toxin A activity.
- SYNSORBs 2, 5, 104, 105, and 134 neutralized about 50% of toxin A activity.
- toxin A is directly related to the oligosaccharide sequences attached to the inert support.
- the results in FIG. 1 show the importance of the ⁇ Gal(1-3) ⁇ Gal linkage for high affinity toxin binding.
- oligosaccharide sequences which possess a ⁇ (1-4) linkage between galactose and either N-acetylglucosamine (type 2 core) or glucose (type 6) show high affinity toxin binding.
- toxin A binds oligosaccharide sequences having fucose attached to the 2 hydroxyl of galactose only.
- FIGS. 1 and 4 show reduction in endpoint titers from hemagglutination assays. Similar results were obtained in tissue culture assays using Chinese Hamster Ovary (CHO) cells. These studies demonstrated that the CHO cells showed a reduction in endpoint dilution relative to controls when SYNSORB was added to purified toxin A preparations.
- CHO Chinese Hamster Ovary
- oligosaccharide sequences attached to solid supports via compatible linker arms have been found to have the ability to neutralize toxin A activity. These sequences, and others that also bind toxin A, may be used to treat CDAD and PMC.
- Optimal time for complete removal of toxin A activity was found to be about 1 hour at 37° C., using a concentration of SYNSORB of 20 mg in 1 ml sample. Since each gram of SYNSORB contains approximately 0.25 to 1.0 micromoles oligosaccharide, the total amount of oligosaccharide to be given in a daily dose would range from 7.5 to 30 micromoles, using a gut volume of four liters.
- Treatment of CDAD or PMC may be accomplished by oral administration of compositions containing oligosaccharide sequences covalently bound to a solid support via a compatible linker arm (e.g. SYNSORBs).
- a compatible linker arm e.g. SYNSORBs
- the SYNSORB has been found to pass through the stomach of rats intact. It then contacts the toxin A in the intestinal tract. Subsequent elimination of the intact SYNSORB with toxin A bound to it results in elimination of toxin A from the patient.
- Oligosaccharide sequences covalently attached via compatible linker arms to solid support are useful to treat individuals who suffer from multiple episodes of diarrhea.
- patients Upon initial reoccurrence of diarrhea, patients would be treated with SYNSORB to remove toxin A from the intestine.
- the removal of toxin A prevents the initial tissue damage to the intestinal lining, which leads to prevention or reduction of diarrhea.
- No further treatment with antibiotics need be given, allowing the reestablishment of the normal intestinal microflora within the gut.
- the advantage of such treatment is that it does not affect the recolonization of the intestinal tract by normal microflora. Treatment until discontinuance of diarrhea would allow complete recovery.
- treatment with oligosaccharide sequences covalently attached via compatible linker arms to solid supports may be used to treat all individuals who suffer from or are prone to develop CDAD or PMC.
- SYNSORB in combination with antibiotic therapy will be able to reduce the diarrhea more effectively, leading to more rapid recovery.
- a major aspect of the invention is the rapid efficient binding of physiological concentration of toxin A present in biological samples, thus permitting assay of the presence and/or quantity of toxin A in these samples.
- the biological sample will be a stool sample.
- the sample may be extracted and prepared using standard extraction techniques.
- the sample or extract is then contacted with the toxin-binding oligosaccharide sequences covalently bound to solid supports via a compatible linker arm under conditions where any toxin A in the sample is absorbed.
- Toxin A may be measured directly on the surface of the oligosaccharide-containing support using any suitable detection system.
- any suitable detection system for example, radioactive, biotinylated or fluorescently labelled monoclonal or polyclonal antibodies specific for toxin A may be used to determine the amount of toxin A bound to the support.
- radioactive, biotinylated or fluorescently labelled monoclonal or polyclonal antibodies specific for toxin A may be used to determine the amount of toxin A bound to the support.
- a wide variety of protocols for detection of formation of specific binding complexes analogous to standard immunoassay techniques is well known in the art.
- Toxin A was isolated from a toxin producing strain of C. difficile (ATCC 43255, VPI strain 10463) using slight modifications of the method of Sullivan et al. [13].
- C. difficile was grown in 2.3 liter of brain heart infusion broth (BHIB) in anaerobic jars for 72 hours at 37° C.
- BHIB brain heart infusion broth
- the crude culture was centrifuged at 5,000 ⁇ g for 20 minutes to sediment the bacteria.
- the resulting culture supernatant was carefully removed and solid ammonium sulfate (897 g) was added to make 60% saturation.
- the culture supernatant was stirred at 4° C. overnight and then centrifuged at 10,000 ⁇ g for 30 minutes.
- the resulting pellet was dissolved in a minimum amount of buffer A (50 mM sodium phosphate buffer, pH 7.5), dialyzed against 2-4 liter changes of buffer A and concentrated by ultrafiltration using a YM 100 (100,000 molecular weight cutoff) membrane.
- buffer A 50 mM sodium phosphate buffer, pH 7.5
- the concentrated toxin-containing solution was loaded onto a DEAE-Sephadex A-25 column (2.5 ⁇ 20 cm) equilibrated with buffer A. After washing the ion exchange resin with buffer A to remove non-adherent protein, the column was developed with a stepwise salt gradient by washing with buffer A containing increasing amounts of NaCl ranging from 0.1 to 0.4M. Toxin A activity was eluted from the column with buffer A containing 0.25M NaCl, while toxin B activity was removed with 0.4M NaCl buffer A.
- the overall purity and amount of toxin from each fraction was determined by measuring the protein concentration, as well as using a cytotoxic endpoint using Chinese hamster ovary (CHO) cells.
- the amount of toxin A activity was also determined by measuring the hemagglutination activity using rabbit erythrocytes.
- the toxin B fraction was devoid of toxin A activity, as determined by the inability of the toxin B-containing fraction to hemagglutinate rabbit erythrocytes.
- Fresh rabbit erythrocytes were washed once in phosphate buffered saline (PBS) and resuspended at a concentration of 4% (v/v) in cold PBS.
- Serial 2-fold dilutions (50 ⁇ l) of toxin A-containing solutions were made in cold PBS in U-shaped microtiter wells.
- An equal volume (50 ⁇ l) of rabbit erythrocytes was then added to each well and the microtiter plate was mixed gently. After incubating the plate for 4 hours at 4° C., the hemagglutination titer was visually assessed.
- cytotoxic activity of toxin A was measured by the use of Chinese Hamster Ovary (CHO) cells that were maintained in Hams F12 media supplemented with 10% fetal bovine serum in an atmosphere of 5% CO 2 at 37° C.
- Toxin A samples to be tested were diluted 1:10 in Hams media and filter sterilized through 0.22 micron syringe filters. Samples to be tested were serial 5-fold diluted in media and 100 ⁇ l of each dilution was added to wells with confluent monolayers of CHO cells, then incubated for 24 hours at 37° C. in an atmosphere of 5% CO 2 . Each sample was analyzed in duplicate.
- a solution containing purified toxin A prepared as described above (0.5 ml) was added to various SYNSORBs containing different oligosaccharide sequences covalently attached to a solid support via an MCO compatible linker arm.
- the amount of SYNSORB used ranged from 10.1 to 17.5 mg.
- the samples were prepared in 1.5 ml microcentrifuge tubes which were incubated at room temperature for 2 hours on an end-over-end rotator.
- SYNSORB SYNSORB
- MCO hydrophobic 8 carbon
- Results are shown in FIG. 1, and demonstrate that several oligosaccharide structures were found to effectively neutralize toxin A activity.
- SYNSORBS 52 and 90 required for maximal toxin A neutralization was determined by adding 1 ml of a purified toxin A solution to pre-weighed amounts of each SYNSORB in 1.5 ml microcentrifuge tubes.
- SYNSORB 52 samples were tested using 12.8, 21.6 and 43.3 mg amounts of SYNSORB 52;
- SYNSORB 90 samples were tested using 12.9, 19.2 and 42.3 mg amounts of SYNSORB 90. Samples were incubated for 2 hours at 37° C. on an end-over-end rotator. Control samples containing only toxin A solution were also tested.
- the amount of neutralization in each sample was determined by comparing the endpoint titers of hemagglutination assays from samples with and without SYNSORB.
- the results, shown in FIG. 2, demonstrate that about 20 mg of each SYNSORB tested was able to neutralize at least 75% of the toxin A in 1 ml of toxin A solution.
- the length of incubation time required for optimal neutralization was determined by incubating microcentrifuge tubes containing 1 ml of purified toxin A solution and 20 mg of either SYNSORB 52 or SYNSORB 90. Samples were incubated at 37° C. on an end-over-end rotator for 10, 20, 40, 80 or 160 minutes.
- the degree of neutralization at each incubation period was determined as described above.
- the results, shown in FIG. 3, demonstrate that about 1 hour incubation (between 40 and 80 minutes) resulted in effective neutralization of toxin A.
- Toxin A positive human stool samples were obtained from University of Alberta Hospital's Microbiology Laboratory. One ml of each stool sample was placed in a 1.5 ml microcentrifuge tube, 20 mg SYNSORB 52 (pre-wetted with 50 ⁇ l PBS) was added, and the tubes were incubated on an end-over-end rotator for 4 hours at 37° C. Control stool samples without SYNSORB were also tested simultaneously. After incubation the stool samples were centrifuged at 14,000 rpm in an Eppendorf Microcentrifuge for 10 minutes. The resulting supernatants were carefully removed and placed into clean microcentrifuge tubes.
- the amount of toxin A in each sample was determined by using the PREMIERTM C. difficile Toxin A detection kit (Meridian Diagnostics, Cincinnati, Ohio). The percent neutralization was assessed by measuring the reduction in the absorbance at 450 nm relative to individual control samples without added SYNSORB.
- Results demonstrate that SYNSORB 52 was able to neutralize toxin A activity in human biological samples.
- each SYNSORB was combined with toxin A as described in Example 1. Endpoint titers from hemagglutination assays using rabbit erythocytes were determined as described previously. SYNSORBs that were more effective at neutralizing toxin A activity possessed oligosaccharide structures that bound to toxin A with higher affinities. Those SYNSORBs which reduced titers by greater than 50% were deemed to bind toxin A.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
______________________________________ αGal(1-3)βGal(1-4)βGlcNac ______________________________________ βGal(1-4)βGlcNAc (human blood group antigen X) (1-3) αFuc βGal(1-4)βGlcNAc (human blood group antigen Y) (1-2) (1-3) αFuc αFuc βGal(1-4)βGlcNac (human blood group antigen I) (1-6) βGal (1-3) βGal(1-4)βGlcNAc ______________________________________
(OLIGOSACCHARIDE--Y--R).sub.n -- SOLID SUPPORT
TABLE 1 ______________________________________ SYNSORBs utilized in toxin A neutralization studies SYN- Struc- SORB ture Common Oligosaccharide Number Number Name Structure* ______________________________________ 2 1 B αGal(1-3)βGal (1-2) αFuc 5 2 H Type 2 βGal(1-4)βGlcNAc (1-2) αFuc 9 3 B Type 2 αGal(1-3)βGal(1-4)βGlcNAc (1-2) αFuc 34 4 N-Acetyl- βGal(1-4)βGlcNAc lactosamine 51 5 X βGal(1-4)βGlcNAc (1-3) αFuc 52 6 Y βGal(1-4)βGlcNAc (1-2) (1-3) αFuc αFuc 68 7 Pk αGal(1-4)βGal(1-4)βGlc 89 8 sialyl- αNeuAc(2-6)βGal(1-4)βGlc lactose 90 9 -- αGal(1-3)βGal(1-4)βGlc 104 10 H Type 6 βGal(1-4)βGlc (1-2) αFuc 105 11 B Type 6 αGal(1-3)βGal(1-4)βGlc (1-2) αFuc 115 12 -- αGal(1-3)βGal(1-4)βGlcNAc 134 13 -- αGal(1-3)βGal(1-3)βGlcNAc ______________________________________ *All oligosaccharides are linked to Chromosorb P through the standard hydrophobic 8 carbon spacer arm.
TABLE 2 ______________________________________ Neutralization of toxin A activity in stool samples withSNYSORB 52 Toxin A Levels Percent in Stool Samples.sup.a Type of Stool.sup.b Neutralization ______________________________________ ++++ SS 96 ++++SW 80 ++++ SW 77 ++++ W 70 ++++ SS 64 +++ SW 63 ++W 80 ++ W 72 ++ SW 46 + S 50 + S 42 + W 35 +W 0 ______________________________________ .sup.a Toxin A levels in stool samples were determined by the use of PREMIER ™ C. difficile Toxin A detection kit. The positive signs in Table 2 represent the relative amount of toxin A in each sample as determined by the absorbance at 450 nm as shown below. The mean percent neutralization using SYNSORB52 with respect to toxin A levels in stool samples are also shown. .sup.A 450 Mean Percent Neutralization ++++ > 1.5 77 ± 12% (n = 5) +++ 1.1-1.4 63% (n = 1) ++ 0.6-1.0 66 ± 18% (n = 3) + 0.1-0.4 32 ± 22% (n = 3) .sup.b The overall consistency of the stool samples examined. The abbreviations S, SS, SW and W refer to solid, semi-solid, semi-watery and watery respectively. The mean percent neutralization of toxin Aactivity using SYNSORB 52 with respect to stool consistency are as follows: S(31 ± 27%, n = 3), SS (80 ± 23%, n = 2), SW (67 ± 16%, n = 4) and W(62 ± 19%, n = 4).
Claims (14)
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/195,009 US5484773A (en) | 1994-02-14 | 1994-02-14 | Treatment of antibiotic associated diarrhea |
IL11242895A IL112428A (en) | 1994-02-14 | 1995-01-24 | Pharmaceutical compositions comprising an oligosaccharide sequence which bind toxin a of clostridium difficile |
ZA95630A ZA95630B (en) | 1994-02-14 | 1995-01-26 | Treatment of antibiotic associated diarrhea |
PCT/CA1995/000060 WO1995021628A1 (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic associated diarrhea |
NZ279180A NZ279180A (en) | 1994-02-14 | 1995-02-09 | Treating clostridium difficile associated diarrhea (cdad) and other antibiotic associated diarrhea using oligosaccharide compositions which bind toxin a |
CA002181359A CA2181359C (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic associated diarrhea |
DE69533084T DE69533084T2 (en) | 1994-02-14 | 1995-02-09 | TREATMENT OF ANTIBIOTIC ASSOCIATED DIARRHOME |
JP52086995A JP4122052B2 (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic-related diarrhea |
NZ328329A NZ328329A (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic associated diarrhea using oligosaccharides |
AT95907526T ATE267614T1 (en) | 1994-02-14 | 1995-02-09 | TREATMENT OF ANTIBIOTIC-ASSOCIATED DIARRHEA |
CN95191615A CN1131070C (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic associated diarrhea |
EP95907526A EP0744959B1 (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic associated diarrhea |
AU15727/95A AU698275B2 (en) | 1994-02-14 | 1995-02-09 | Treatment of antibiotic associated diarrhea |
US08/450,572 US5635606A (en) | 1994-02-14 | 1995-05-25 | Method of binding and removing toxin A |
MX9603403A MX197129B (en) | 1994-02-14 | 1996-08-13 | Treatment of antibiotic associated diarrhea. |
KR19967004399A KR970701064A (en) | 1994-02-14 | 1996-08-13 | Treatment of antibiotic associated diarrhea |
NO963378A NO963378D0 (en) | 1994-02-14 | 1996-08-13 | Treatment of antibiotic-associated diarrhea |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/195,009 US5484773A (en) | 1994-02-14 | 1994-02-14 | Treatment of antibiotic associated diarrhea |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/450,572 Continuation US5635606A (en) | 1994-02-14 | 1995-05-25 | Method of binding and removing toxin A |
Publications (1)
Publication Number | Publication Date |
---|---|
US5484773A true US5484773A (en) | 1996-01-16 |
Family
ID=22719705
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/195,009 Expired - Lifetime US5484773A (en) | 1994-02-14 | 1994-02-14 | Treatment of antibiotic associated diarrhea |
US08/450,572 Expired - Fee Related US5635606A (en) | 1994-02-14 | 1995-05-25 | Method of binding and removing toxin A |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/450,572 Expired - Fee Related US5635606A (en) | 1994-02-14 | 1995-05-25 | Method of binding and removing toxin A |
Country Status (15)
Country | Link |
---|---|
US (2) | US5484773A (en) |
EP (1) | EP0744959B1 (en) |
JP (1) | JP4122052B2 (en) |
KR (1) | KR970701064A (en) |
CN (1) | CN1131070C (en) |
AT (1) | ATE267614T1 (en) |
AU (1) | AU698275B2 (en) |
CA (1) | CA2181359C (en) |
DE (1) | DE69533084T2 (en) |
IL (1) | IL112428A (en) |
MX (1) | MX197129B (en) |
NO (1) | NO963378D0 (en) |
NZ (1) | NZ279180A (en) |
WO (1) | WO1995021628A1 (en) |
ZA (1) | ZA95630B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811409A (en) * | 1995-06-05 | 1998-09-22 | Synsorb Biotech, Inc. | Treatment of cholera |
US5846943A (en) * | 1996-11-08 | 1998-12-08 | Synsorb Biotech, Inc. | Solid support matricles containing a toxin binding oligosaccharide |
US5849714A (en) * | 1996-06-21 | 1998-12-15 | Synsorb Biotech Inc. | Treatment of bacterial dysentery |
WO1999001140A1 (en) * | 1997-07-02 | 1999-01-14 | Neose Technologies, Inc. | Oligosaccharides for attenuating xenograft rejection and methods based thereon |
US5955449A (en) * | 1991-10-18 | 1999-09-21 | Synsorb Biotech Inc. | Diagnosis and treatment of bacterial dysentery |
WO1999061031A1 (en) * | 1998-05-28 | 1999-12-02 | Synsorb Biotech, Inc. | Treatment of c. difficile toxin b associated conditions |
US6001819A (en) * | 1995-06-07 | 1999-12-14 | Neose Technologies, Inc. | Bacterial inhibition with an oligosaccharide compound |
US6013634A (en) * | 1996-11-08 | 2000-01-11 | Synsorb Biotech, Inc. | Solid support matrices containing a toxin binding oligosaccharide |
US6270755B1 (en) | 1999-05-13 | 2001-08-07 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders |
US6290946B1 (en) | 1999-05-13 | 2001-09-18 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders and antibacterial agents |
US6358930B1 (en) | 1998-05-28 | 2002-03-19 | Synsorb Biotech Inc. | Treatment of C. difficile toxin B associated conditions |
US6596707B2 (en) * | 2001-05-24 | 2003-07-22 | Abbott Laboratories | Monovalent saccharides and uses thereof |
US6730295B2 (en) | 2000-05-02 | 2004-05-04 | Genzyme Corporation | Anionic polymers as species specific antibacterial agents |
US20060078534A1 (en) * | 2004-10-13 | 2006-04-13 | Dominique Charmot | Toxin binding compositions |
US20060099169A1 (en) * | 2004-10-13 | 2006-05-11 | Ilypsa, Inc. | Toxin binding compositions |
WO2006122835A1 (en) * | 2005-05-18 | 2006-11-23 | Da Volterra | Colonic delivery of adsorbents |
US20070053865A1 (en) * | 2002-07-22 | 2007-03-08 | Toni Chancellor-Adams | Poly(potassium and sodium styrene sulfonate) its manufacture and its uses |
US20070184120A1 (en) * | 2003-10-01 | 2007-08-09 | Clemson University | Adhesin-specific nanoparticles and process for using same |
WO2007132022A2 (en) * | 2006-05-17 | 2007-11-22 | Da Volterra | Site-specific intestinal delivery of adsorbents, alone or in combination with degrading molecules |
US20080089942A1 (en) * | 2006-08-17 | 2008-04-17 | Xavier Frapaise | Use of adsorbent carbon microspheres to treat intestinal bacterial infections |
US20120202753A1 (en) * | 2009-07-06 | 2012-08-09 | Children's Hospital Medical Center D/B/A Cincinnati Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US8541168B1 (en) * | 1995-03-10 | 2013-09-24 | Jacob Wohlstadter | Multi-array, multi-specific electrochemiluminescence testing |
US9132142B2 (en) | 2007-09-07 | 2015-09-15 | The General Hospital Corporation | Use of secretor, Lewis and sialyl antigen levels in clinical samples as predictors of risk for disease |
US10626460B2 (en) | 2013-02-21 | 2020-04-21 | Children's Hospital Medical Center | Use of glycans and glycosyltransferases for diagnosing/monitoring inflammatory bowel disease |
US10857167B2 (en) | 2015-04-28 | 2020-12-08 | Children's Hospital Medical Center | Use of oligosaccharide compositions to enhance weight gain |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4428056A1 (en) * | 1994-07-29 | 1996-02-08 | Schering Ag | Use of microparticle preparations to eliminate dissolved, non-renal substances from the blood |
US5637576A (en) * | 1995-06-05 | 1997-06-10 | Synsorb Biotech, Inc. | Treatment of traveller's diarrhea |
US5627163A (en) * | 1995-06-05 | 1997-05-06 | Synsorb Biotech, Inc. | Treatment of traveller's diarrhea |
US5661131A (en) * | 1995-06-05 | 1997-08-26 | Synsorb Biotech, Inc. | Treatment of cholera |
US5891860A (en) * | 1996-03-11 | 1999-04-06 | Synsorb Biotech, Inc. | Treatment of traveller's diarrhea |
US6069137A (en) * | 1996-03-11 | 2000-05-30 | Synsorb Biotech, Inc. | Treatment of traveller's diarrhea |
US6063769A (en) * | 1996-11-14 | 2000-05-16 | Synsorb Biotech, Inc. | 1-thiogalactose derivatives |
US6087339A (en) * | 1996-11-14 | 2000-07-11 | Synsorb Biotech, Inc. | Saccharide derivatives |
US5968907A (en) * | 1996-11-14 | 1999-10-19 | Synsorb Biotech, Inc. | 1-thiogalactose derivatives |
US5932554A (en) * | 1996-11-14 | 1999-08-03 | Synsorb Biotech, Inc. | 1-galactose derivatives |
AU736031B2 (en) * | 1996-11-15 | 2001-07-26 | Synsorb Biotech Inc. | Combinatorial synthesis of carbohydrate libraries |
US5965719A (en) * | 1996-11-15 | 1999-10-12 | Sunsorb Biotech, Inc. | Combinatorial synthesis of carbohydrate libraries |
US20020019991A1 (en) * | 1998-04-30 | 2002-02-14 | Abbott Laboratories | Compositions containing an alpha 1,2-fucose linkage and uses thereof |
US6174867B1 (en) | 1998-05-08 | 2001-01-16 | Synsorb Biotech, Inc. | 1-galactose derivatives having a carbon- or nitrogen-containing aglycon linkage |
US6291435B1 (en) | 1999-03-04 | 2001-09-18 | The Governs Of The University Of Alberta | Treatment of diarrhea caused by enteropathogenic Escherichia coli |
MXPA06006392A (en) * | 2003-12-05 | 2007-03-15 | Childrens Hosp Medical Center | Oligosaccharide compositions and use thereof in the treatment of infection. |
US7915235B2 (en) * | 2006-03-20 | 2011-03-29 | Brian Dieckgraefe | High affinity ligands bind to clostridium difficile toxin A |
WO2007114683A1 (en) * | 2006-03-30 | 2007-10-11 | N.V. Nutricia | Milk oligosaccharides for stimulating the immune system |
CN108977497A (en) * | 2018-06-12 | 2018-12-11 | 深圳市领治医学科技有限公司 | A method of acquisition and depositary's trace fecal sample |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137401A (en) * | 1975-07-08 | 1979-01-30 | Chembiomed Limited | Glycoside-ether-ester compounds |
US4362720A (en) * | 1977-04-14 | 1982-12-07 | Chembiomed Ltd. | Synthesis of 2-amino-2-deoxyglycoses and 2-amino-2-deoxyglycosides from glycals |
US4713240A (en) * | 1985-04-04 | 1987-12-15 | Research Corporation | Vaccines based on insoluble supports |
EP0319253A2 (en) * | 1987-12-02 | 1989-06-07 | Alberta Research Council | Sialic acid glycosides, antigens, immunoadsorbents, and methods for their preparation |
US4863852A (en) * | 1985-07-03 | 1989-09-05 | Virginia Tech Intellectual Properties, Inc. | Method of detecting, isolating and purifying clostridium difficile toxin A and its receptors |
US5098826A (en) * | 1990-03-09 | 1992-03-24 | Virginia Tech Intellectual Properties, Inc. | Detection, isolation and purification of Clostridium difficile toxin A with toxin receptors |
WO1993008209A1 (en) * | 1991-10-18 | 1993-04-29 | Chembiomed Ltd. | Diagnosis and treatment of bacterial dysentery |
US5266315A (en) * | 1990-05-07 | 1993-11-30 | Kabushiki Kaisha Miyarisan Seibutsu Igaku Kenkyusho | Composite for Clostridium difficile diarrhea and pseudomembranous colitis |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2857790C2 (en) * | 1977-04-14 | 1983-12-22 | Chembiomed Ltd., Edmonton, Alberta | Process for the preparation of O-protected 2-azido-2-deoxy-glycosyl halides, some such compounds as such and their use |
-
1994
- 1994-02-14 US US08/195,009 patent/US5484773A/en not_active Expired - Lifetime
-
1995
- 1995-01-24 IL IL11242895A patent/IL112428A/en active IP Right Grant
- 1995-01-26 ZA ZA95630A patent/ZA95630B/en unknown
- 1995-02-09 DE DE69533084T patent/DE69533084T2/en not_active Expired - Fee Related
- 1995-02-09 EP EP95907526A patent/EP0744959B1/en not_active Expired - Lifetime
- 1995-02-09 AT AT95907526T patent/ATE267614T1/en not_active IP Right Cessation
- 1995-02-09 CA CA002181359A patent/CA2181359C/en not_active Expired - Fee Related
- 1995-02-09 JP JP52086995A patent/JP4122052B2/en not_active Expired - Fee Related
- 1995-02-09 CN CN95191615A patent/CN1131070C/en not_active Expired - Fee Related
- 1995-02-09 AU AU15727/95A patent/AU698275B2/en not_active Ceased
- 1995-02-09 NZ NZ279180A patent/NZ279180A/en unknown
- 1995-02-09 WO PCT/CA1995/000060 patent/WO1995021628A1/en active IP Right Grant
- 1995-05-25 US US08/450,572 patent/US5635606A/en not_active Expired - Fee Related
-
1996
- 1996-08-13 KR KR19967004399A patent/KR970701064A/en unknown
- 1996-08-13 NO NO963378A patent/NO963378D0/en not_active Application Discontinuation
- 1996-08-13 MX MX9603403A patent/MX197129B/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137401A (en) * | 1975-07-08 | 1979-01-30 | Chembiomed Limited | Glycoside-ether-ester compounds |
US4238473A (en) * | 1975-07-08 | 1980-12-09 | Chembiomed Limited | Artificial oligosaccharide antigenic determinants |
US4362720A (en) * | 1977-04-14 | 1982-12-07 | Chembiomed Ltd. | Synthesis of 2-amino-2-deoxyglycoses and 2-amino-2-deoxyglycosides from glycals |
US4713240A (en) * | 1985-04-04 | 1987-12-15 | Research Corporation | Vaccines based on insoluble supports |
US4863852A (en) * | 1985-07-03 | 1989-09-05 | Virginia Tech Intellectual Properties, Inc. | Method of detecting, isolating and purifying clostridium difficile toxin A and its receptors |
EP0319253A2 (en) * | 1987-12-02 | 1989-06-07 | Alberta Research Council | Sialic acid glycosides, antigens, immunoadsorbents, and methods for their preparation |
US5079353A (en) * | 1987-12-02 | 1992-01-07 | Chembiomed, Ltd. | Sialic acid glycosides, antigens, immunoadsorbents, and methods for their preparation |
US5098826A (en) * | 1990-03-09 | 1992-03-24 | Virginia Tech Intellectual Properties, Inc. | Detection, isolation and purification of Clostridium difficile toxin A with toxin receptors |
US5266315A (en) * | 1990-05-07 | 1993-11-30 | Kabushiki Kaisha Miyarisan Seibutsu Igaku Kenkyusho | Composite for Clostridium difficile diarrhea and pseudomembranous colitis |
WO1993008209A1 (en) * | 1991-10-18 | 1993-04-29 | Chembiomed Ltd. | Diagnosis and treatment of bacterial dysentery |
Non-Patent Citations (92)
Title |
---|
Abbas, S. A., et al., "Tumor-Associated Oligosaccharides I: Synthesis of Sialyl-Lewisa Antigenic Determinant", Sialic Acids, Proc. Japan-German Symp. Berlin 22-23 (1988). |
Abbas, S. A., et al., Tumor Associated Oligosaccharides I: Synthesis of Sialyl Lewis a Antigenic Determinant , Sialic Acids, Proc. Japan German Symp. Berlin 22 23 (1988). * |
Amvam Zollo, P., et al., Streptococcus pneumoniae Type XIV Polysaccharide: Synthesis of a Repeating Branched Tetrasaccharide with Dioxa Type Spacer Arms , Carbohydrate Research, 150:199 212 (1986). * |
Amvam-Zollo, P., et al., "Streptococcus pneumoniae Type XIV Polysaccharide: Synthesis of a Repeating Branched Tetrasaccharide with Dioxa-Type Spacer-Arms", Carbohydrate Research, 150:199-212 (1986). |
Armstrong, G. D., et al., "Investigation of shiga-like toxin binding to chemically synthesized oligosaccharide sequences", J. Infect. Dis., 164:1160-7 (1991). |
Armstrong, G. D., et al., Investigation of shiga like toxin binding to chemically synthesized oligosaccharide sequences , J. Infect. Dis., 164:1160 7 (1991). * |
Barbut, F, et al., "Comparison of enterotoxin production, cytotoxin production, serogrouping and antimicrobial susceptibilities of Clostridium difficile strains isolated from AIDS and human immunodeficiency virus-negative patients", J. Clin. Microbiol. 31:740-2 (1993). |
Barbut, F, et al., Comparison of enterotoxin production, cytotoxin production, serogrouping and antimicrobial susceptibilities of Clostridium difficile strains isolated from AIDS and human immunodeficiency virus negative patients , J. Clin. Microbiol. 31:740 2 (1993). * |
Bartlett, J D, "Treatment of antibiotic-associated pseudomembranous colitis", Rev. Infect. Dis., 6, Suppl. 1:5235-41 (1984). |
Bartlett, J D, Treatment of antibiotic associated pseudomembranous colitis , Rev. Infect. Dis., 6, Suppl. 1:5235 41 (1984). * |
Bartlett, J G, et al., "Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia", N. Engl. J. Med. 298:531-534 (1978). |
Bartlett, J G, et al., "Symptomatic relapse after oral vancomycin therapy of antibiotic-associated pseudomembranous colitis", Gastroenterology, 78:431-4 (1980). |
Bartlett, J G, et al., Antibiotic associated pseudomembranous colitis due to toxin producing clostridia , N. Engl. J. Med. 298:531 534 (1978). * |
Bartlett, J G, et al., Symptomatic relapse after oral vancomycin therapy of antibiotic associated pseudomembranous colitis , Gastroenterology, 78:431 4 (1980). * |
Chernyak, A. Y., et al., "A New Type of Carbohydrate-Containing Synthetic Antigen: Synthesis of Carbohydrate-Containing Polyacrylamide Copolymers having the Specificity of 0:3 and 0:4 Factors of Salmonella", Carbohydrate Research, 128: 269-282 (1984). |
Chernyak, A. Y., et al., A New Type of Carbohydrate Containing Synthetic Antigen: Synthesis of Carbohydrate Containing Polyacrylamide Copolymers having the Specificity of 0:3 and 0:4 Factors of Salmonella , Carbohydrate Research, 128: 269 282 (1984). * |
Clark, G F, et al., "Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal αGal(1-3)βGal(14)βGIcNAc sequences", Arch. Biochem. Biophys., 257:217-29 (1987). |
Clark, G F, et al., Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gal(1 3) Gal(14) GIcNAc sequences , Arch. Biochem. Biophys., 257:217 29 (1987). * |
Cox, D., et al. "A New Synthesis of 4-O-α-D-Galactopyranosyl-D-Galacto-Pyranose", Carbohy. Res., 62: 245-252 (1978). |
Cox, D., et al. A New Synthesis of 4 O D Galactopyranosyl D Galacto Pyranose , Carbohy. Res., 62: 245 252 (1978). * |
Cozart, J C, et al., "Clostridium difficile diarrhea in patients with AIDS versus non-AIDS controls. Method of treatment and clinical response to treatment", J. Clin. Gastroenterol. 16:192-4 (1993). |
Cozart, J C, et al., Clostridium difficile diarrhea in patients with AIDS versus non AIDS controls. Method of treatment and clinical response to treatment , J. Clin. Gastroenterol. 16:192 4 (1993). * |
Dahm n, J., et al., 2 Bromoethyl glycosides: applications in the synthesis of spacer arm glycosides, Carbohydrate Research, 118: 292 301 (1983). * |
Dahm n, J., et al., Synthesis of space arm, lipid, and ethyl glycosides of the trisaccharide portion D Gal (1 4) D GIc of the blood group p k antigen: preparation of neoglycoproteins , Carbohydrate Research, 127: 15 25 (1984). * |
Dahmen, J., et al., "2-Bromoethyl glycosides: applications in the synthesis of spacer-arm glycosides," Carbohydrate Research, 118: 292-301 (1983). |
Dahmen, J., et al., "Synthesis of space arm, lipid, and ethyl glycosides of the trisaccharide portion [α-D-Gal-(1-4)-β-D-GIc] of the blood group pk antigen: preparation of neoglycoproteins", Carbohydrate Research, 127: 15-25 (1984). |
Ekborg, G., et al., "Synthesis of Three Disaccharides for the Preparation of Immunogens bearing Immunodeterminants Known to Occur on Glycoproteins", Carbohydrate Research, 110: 55-67 (1982). |
Ekborg, G., et al., Synthesis of Three Disaccharides for the Preparation of Immunogens bearing Immunodeterminants Known to Occur on Glycoproteins , Carbohydrate Research, 110: 55 67 (1982). * |
Eveillard, M. et al., "Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT29 cells in culture", Molecular Microbiology, 7: 371-381 (1993). |
Eveillard, M. et al., Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte like Caco 2 and mucus secreting HT29 cells in culture , Molecular Microbiology, 7: 371 381 (1993). * |
F gedi, P., et al., Thioglycosides as Glycosylating Agents in Oligosaccharide Synthesis , Glycoconjugate J., 4:97 108 (1987). * |
Fernandez Santana, V., et al., Glycosides of Monoallyl Diethylene Glycol. A New type of Spacer group for Synthetic Oligosaccharides , J. Carbohydrate Chemistry, 8(3), 531 537 (1989). * |
Fernandez-Santana, V., et al., "Glycosides of Monoallyl Diethylene Glycol. A New type of Spacer group for Synthetic Oligosaccharides", J. Carbohydrate Chemistry, 8(3), 531-537 (1989). |
Finegold, S. M., et al., "Therapy directed against Clostridium difficile and its toxins. Complications of therapy". In Rolfe, R. D. et al. (eds) C. difficile: It's Role in Intestinal Disease, Academic Press, Inc., San Diego Calif. 341-57 (1988). |
Finegold, S. M., et al., Therapy directed against Clostridium difficile and its toxins. Complications of therapy . In Rolfe, R. D. et al. (eds) C. difficile: It s Role in Intestinal Disease, Academic Press, Inc., San Diego Calif. 341 57 (1988). * |
Fugedi, P., et al., "Thioglycosides as Glycosylating Agents in Oligosaccharide Synthesis", Glycoconjugate J., 4:97-108 (1987). |
Garegg, P. J., et al., "A Synthesis of 8-Methoxycarbonyloct-1-yl O-α-D-Galactopyranosyl-(1→3)-O-β-D-Galactopyranosyl-(1.fwdarw.4)-2-Acetamido-2-Deoxy-β-D-Glucopyranoside", Carbohy. Res., 136: 207-213 (1985). |
Garegg, P. J., et al., "Synthesis of 6- and 6'-deoxy derivatives of methyl 4-O-α-D-galactopyranosyl-β-D-galactopyranoside for studies of inhibition of pyelonephritogenic fimbriated E. coli adhesion to urinary epithelium-cell surfaces", Carbohy. Res., 137: 270-275 (1985). |
Garegg, P. J., et al., A Synthesis of 8 Methoxycarbonyloct 1 yl O D Galactopyranosyl (1 3) O D Galactopyranosyl (1 4) 2 Acetamido 2 Deoxy D Glucopyranoside , Carbohy. Res., 136: 207 213 (1985). * |
Garegg, P. J., et al., Synthesis of 6 and 6 deoxy derivatives of methyl 4 O D galactopyranosyl D galactopyranoside for studies of inhibition of pyelonephritogenic fimbriated E. coli adhesion to urinary epithelium cell surfaces , Carbohy. Res., 137: 270 275 (1985). * |
Heerze, et al., "Oligosaccharide sequences attached to an inert support (SYNSORB) as a potential therapy for antibiotic associated diarrhea and pseudomonous colitis," J. Infect. Dis. 169: 1291-1296, Jun. 1994. |
Heerze, et al., Oligosaccharide sequences attached to an inert support (SYNSORB) as a potential therapy for antibiotic associated diarrhea and pseudomonous colitis, J. Infect. Dis. 169: 1291 1296, Jun. 1994. * |
Heerze, et al., Utilization of oligosaccharide sequences attached to an inert support (SYNSORB) as a potential therapy for antibiotic associated diarrhea and pseudomonous colitis, Abs. Gen. Soc. Micro. 46: Abs 120965, 25 May 1994. * |
International Search Report mailed on Jun. 30, 1995 in connection with counterpart PCT International Application No. PCT/CA95/00060. * |
Jacquinet, J. C., et al., "Synthesis of Blood-group Substances, Part 11. Synthesis of the Trisaccharide O-α-D-Galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1.fwdarw.4)-2-acetamido-2-deoxy-D-glucopyranose", J. C. S. Perkin, 1: 326-330 (1981). |
Jacquinet, J. C., et al., Synthesis of Blood group Substances, Part 11. Synthesis of the Trisaccharide O D Galactopyranosyl (1 3) O D galactopyranosyl (1 4) 2 acetamido 2 deoxy D glucopyranose , J. C. S. Perkin, 1: 326 330 (1981). * |
Kameyama, A., et al., "Total synthesis of sialyl Lewis X", Carbohydrate Res., 209: c1-c4 (1991). |
Kameyama, A., et al., Total synthesis of sialyl Lewis X , Carbohydrate Res., 209: c1 c4 (1991). * |
Kamiya, S, et al., "Analysis of purity of Clostridium difficile toxin A derived by affinity chromatography on immobilized bovine thyroglobulin", FEMS Microbiol. Lett., 56:331-6 (1988). |
Kamiya, S, et al., Analysis of purity of Clostridium difficile toxin A derived by affinity chromatography on immobilized bovine thyroglobulin , FEMS Microbiol. Lett., 56:331 6 (1988). * |
Keighley, M R B, "Antibiotic-associated pseudomembranous colitis: pathogenesis and management", Drugs, 20:449-56 (1980). |
Keighley, M R B, Antibiotic associated pseudomembranous colitis: pathogenesis and management , Drugs, 20:449 56 (1980). * |
Kirvan, H. C., et al., "Purification of Clostridium difficile toxin A by affinity chromatography on immobilized bovine thyroglobulin", Infect. Immun., 55:1873-7 (1987). |
Kirvan, H. C., et al., Purification of Clostridium difficile toxin A by affinity chromatography on immobilized bovine thyroglobulin , Infect. Immun., 55:1873 7 (1987). * |
Koike, K., et al., "Total Synthesis of Globotriaosyl-E and Z-Ceramides and Isoglobotriaosyl-E Ceramide," Carbohydr. Res., 163: 189-208 (1987). |
Koike, K., et al., Total Synthesis of Globotriaosyl E and Z Ceramides and Isoglobotriaosyl E Ceramide, Carbohydr. Res., 163: 189 208 (1987). * |
Krivan, H C, et al., "Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence αGal(1-3)βGal(1-4)βGIcNAc", Infect. Immun., 53:573-81 (1986). |
Krivan, H C, et al., Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal(1 3) Gal(1 4) GIcNAc , Infect. Immun., 53:573 81 (1986). * |
Kushnaryov, V. M., et al., "Effect of Clostridium difficile Enterotoxin A on Ultrastructure of Chinese Hamster Ovary Cells", Infection and Immunity, 57: 3914-3921 (1989). |
Kushnaryov, V. M., et al., Effect of Clostridium difficile Enterotoxin A on Ultrastructure of Chinese Hamster Ovary Cells , Infection and Immunity, 57: 3914 3921 (1989). * |
Lee, R. T., et al., "Synthesis of 3-(2-Aminoethylthio) PropylGlycosides", Carbohydrate Research, 37: 193-201 (1974). |
Lee, R. T., et al., Synthesis of 3 (2 Aminoethylthio) PropylGlycosides , Carbohydrate Research, 37: 193 201 (1974). * |
Lemieux, R U, et al., "The properties of a `synthetic` antigen related to the blood-group Lewis A", J. Am. Chem. Soc., 97:4076-83 (1975). |
Lemieux, R U, et al., The properties of a synthetic antigen related to the blood group Lewis A , J. Am. Chem. Soc., 97:4076 83 (1975). * |
Lyerly, D M, "Epidemiology of Clostridium difficile disease", Clin. Microbiol. News 15:49-53 (1993). |
Lyerly, D M, Epidemiology of Clostridium difficile disease , Clin. Microbiol. News 15:49 53 (1993). * |
Lyerly, D M, et al., "Clostridium difficile: Its Disease and Toxins", Clinical Microbiology Reviews, 1:18 (1988). |
Lyerly, D M, et al., Clostridium difficile: Its Disease and Toxins , Clinical Microbiology Reviews, 1:18 (1988). * |
Okamoto, K., et al., "Glycosidation of Sialic Acid," Tetrahedron, 47: 5835-5857 (1990). |
Okamoto, K., et al., Glycosidation of Sialic Acid, Tetrahedron, 47: 5835 5857 (1990). * |
Onderdonk, A B, et al., "Comparative effects of clindamycin and clindamycin metabolites in the hamster model for antibiotic-associated colitis", J. Antimicrob. Chem., 8:383-93 (1981). |
Onderdonk, A B, et al., Comparative effects of clindamycin and clindamycin metabolites in the hamster model for antibiotic associated colitis , J. Antimicrob. Chem., 8:383 93 (1981). * |
Paulsen, "Advances in Selective Chemical Syntheses of Complex Oligosaccharides", Angew. Chem. Int. Ed. Eng., 21:155-173 (1982). |
Paulsen, Advances in Selective Chemical Syntheses of Complex Oligosaccharides , Angew. Chem. Int. Ed. Eng., 21:155 173 (1982). * |
Paulsen, H., "Synthese von oligosaccharid-determinanten mit amid-spacer vom typ des T-antigens", Carbohydr. Res., 104:195-219 (1982). |
Paulsen, H., Synthese von oligosaccharid determinanten mit amid spacer vom typ des T antigens , Carbohydr. Res., 104:195 219 (1982). * |
Rana, S. S., et al., "Synthesis of Phenyl 2-Acetamido-2-Deoxy-3-O-αL-Fucopyranosyl-β-D-Glucopyranoside and Related Compounds", Carbohydrate Research, 91: 149-157 (1981). |
Rana, S. S., et al., Synthesis of Phenyl 2 Acetamido 2 Deoxy 3 O L Fucopyranosyl D Glucopyranoside and Related Compounds , Carbohydrate Research, 91: 149 157 (1981). * |
Schaubach, R., et al., "Tumor-Associated Antigen Synthesis of the Gal-α-(1→3)-Gal-β-(1→4)-GICNAc Epitope. A specific Determinant for Metastatic Progression?," Liebigs Ann. Chem., 607-614 (1991). |
Schaubach, R., et al., Tumor Associated Antigen Synthesis of the Gal (1 3) Gal (1 4) GICNAc Epitope. A specific Determinant for Metastatic Progression , Liebigs Ann. Chem., 607 614 (1991). * |
Schmidt, "New Methods for the Synthesis of Glycosides and Oligosaccharides--Are There Alternatives to the Koenigs-Knorr Method?" Angew. Chem. Int. Ed. Eng., 25:212-235 (1986). |
Schmidt, New Methods for the Synthesis of Glycosides and Oligosaccharides Are There Alternatives to the Koenigs Knorr Method Angew. Chem. Int. Ed. Eng., 25:212 235 (1986). * |
Sullivan, N M, et al., "Purification and characterization of toxin A and B from Clostridium difficile", Infect. Immun., 35:1032-40 (1983). |
Sullivan, N M, et al., Purification and characterization of toxin A and B from Clostridium difficile , Infect. Immun., 35:1032 40 (1983). * |
Tedesco, F J, "Pseudomembranous colitis: Pathogenesis and therapy", Med. Clin. North Am., 66:655-64 (1982). |
Tedesco, F J, Pseudomembranous colitis: Pathogenesis and therapy , Med. Clin. North Am., 66:655 64 (1982). * |
Triadfilopoulos, G, et al., "Differential effects of Clostridium difficile toxin a and b on rabbit ileum", Gastroenterology, 93:273-9 (1987). |
Triadfilopoulos, G, et al., Differential effects of Clostridium difficile toxin a and b on rabbit ileum , Gastroenterology, 93:273 9 (1987). * |
Tucker, K D, et al., "Toxin A of Clostridium difficile binds to carbohydrate antigens I, X, and Y", Infect. Immun., 59:73-8 (1991). |
Tucker, K D, et al., Toxin A of Clostridium difficile binds to carbohydrate antigens I, X, and Y , Infect. Immun., 59:73 8 (1991). * |
Von Eichel Streiber, C., et al., Clostridium difficile toxin A carries a c terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glycosyltransferases , Gene, 96:107 13 (1990). * |
Von Eichel-Streiber, C., et al., "Clostridium difficile toxin A carries a c-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glycosyltransferases", Gene, 96:107-13 (1990). |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5955449A (en) * | 1991-10-18 | 1999-09-21 | Synsorb Biotech Inc. | Diagnosis and treatment of bacterial dysentery |
US8541168B1 (en) * | 1995-03-10 | 2013-09-24 | Jacob Wohlstadter | Multi-array, multi-specific electrochemiluminescence testing |
US5817633A (en) * | 1995-06-05 | 1998-10-06 | Synsorb Biotech, Inc. | Treatment of cholera |
US5811409A (en) * | 1995-06-05 | 1998-09-22 | Synsorb Biotech, Inc. | Treatment of cholera |
US6001819A (en) * | 1995-06-07 | 1999-12-14 | Neose Technologies, Inc. | Bacterial inhibition with an oligosaccharide compound |
US6121242A (en) * | 1996-06-21 | 2000-09-19 | Synsorb Biotech, Inc. | Treatment of bacterial dysentery |
US5849714A (en) * | 1996-06-21 | 1998-12-15 | Synsorb Biotech Inc. | Treatment of bacterial dysentery |
US5846943A (en) * | 1996-11-08 | 1998-12-08 | Synsorb Biotech, Inc. | Solid support matricles containing a toxin binding oligosaccharide |
US6013634A (en) * | 1996-11-08 | 2000-01-11 | Synsorb Biotech, Inc. | Solid support matrices containing a toxin binding oligosaccharide |
WO1999001140A1 (en) * | 1997-07-02 | 1999-01-14 | Neose Technologies, Inc. | Oligosaccharides for attenuating xenograft rejection and methods based thereon |
US6013635A (en) * | 1998-05-28 | 2000-01-11 | Synsorb Biotech, Inc. | Treatment of C. difficile toxin B associated conditions |
EP1704865A2 (en) * | 1998-05-28 | 2006-09-27 | SYNSORB Biotech Inc. | Treatment of C. difficile toxin B associated conditions |
EP1704865A3 (en) * | 1998-05-28 | 2006-12-06 | SYNSORB Biotech Inc. | Treatment of c. difficile toxin b associated conditions |
US6107282A (en) * | 1998-05-28 | 2000-08-22 | Synsorb Biotech, Inc. | Treatment of C. difficile toxin B associated conditions |
US6358930B1 (en) | 1998-05-28 | 2002-03-19 | Synsorb Biotech Inc. | Treatment of C. difficile toxin B associated conditions |
WO1999061031A1 (en) * | 1998-05-28 | 1999-12-02 | Synsorb Biotech, Inc. | Treatment of c. difficile toxin b associated conditions |
US6465435B1 (en) * | 1998-05-28 | 2002-10-15 | Synsorb Biotech, Inc. | Treatment of C. difficile toxin B associated conditions |
US20060029568A1 (en) * | 1999-05-13 | 2006-02-09 | Genzyme Corporation | Anionic polymers as toxin binders and antibacterial agents |
US6270755B1 (en) | 1999-05-13 | 2001-08-07 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders |
US20030138397A1 (en) * | 1999-05-13 | 2003-07-24 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders and antibacterial agents |
US6890523B2 (en) | 1999-05-13 | 2005-05-10 | Genzyme Corporation | Anionic polymers as toxin binders and antibacterial agents |
US6517827B1 (en) * | 1999-05-13 | 2003-02-11 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders and antibacterial agent |
US7678369B2 (en) | 1999-05-13 | 2010-03-16 | Genzyme Corporation | Anionic polymers as toxin binders and antibacterial agents |
US6517826B1 (en) | 1999-05-13 | 2003-02-11 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders and antibacterial agents |
US6290946B1 (en) | 1999-05-13 | 2001-09-18 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders and antibacterial agents |
US6419914B2 (en) | 1999-05-13 | 2002-07-16 | Geltex Pharmaceuticals, Inc. | Anionic polymers as toxin binders |
US6730295B2 (en) | 2000-05-02 | 2004-05-04 | Genzyme Corporation | Anionic polymers as species specific antibacterial agents |
US6596707B2 (en) * | 2001-05-24 | 2003-07-22 | Abbott Laboratories | Monovalent saccharides and uses thereof |
US20090175818A1 (en) * | 2002-07-22 | 2009-07-09 | Caroline Bacon-Kurtz | Poly(Potassium and Sodium Styrene Sulfonate) Its Manufacture and Its Uses |
US20070053865A1 (en) * | 2002-07-22 | 2007-03-08 | Toni Chancellor-Adams | Poly(potassium and sodium styrene sulfonate) its manufacture and its uses |
US20070184120A1 (en) * | 2003-10-01 | 2007-08-09 | Clemson University | Adhesin-specific nanoparticles and process for using same |
US7682631B2 (en) | 2003-10-01 | 2010-03-23 | Clemson University | Adhesin-specific nanoparticles and process for using same |
US20060099169A1 (en) * | 2004-10-13 | 2006-05-11 | Ilypsa, Inc. | Toxin binding compositions |
US20060078534A1 (en) * | 2004-10-13 | 2006-04-13 | Dominique Charmot | Toxin binding compositions |
WO2006122835A1 (en) * | 2005-05-18 | 2006-11-23 | Da Volterra | Colonic delivery of adsorbents |
US20090324568A1 (en) * | 2005-05-18 | 2009-12-31 | Helene-Celine Huguet | Colonic Delivery of Adsorbents |
US8106000B2 (en) | 2005-05-18 | 2012-01-31 | Da Volterra | Colonic delivery of adsorbents |
US20080031867A1 (en) * | 2006-05-17 | 2008-02-07 | Helene Huguet | Site-specific intestinal delivery of adsorbents, alone or in combination with degrading molecules |
US8048413B2 (en) | 2006-05-17 | 2011-11-01 | Helene Huguet | Site-specific intestinal delivery of adsorbents, alone or in combination with degrading molecules |
WO2007132022A3 (en) * | 2006-05-17 | 2008-01-10 | Da Volterra | Site-specific intestinal delivery of adsorbents, alone or in combination with degrading molecules |
US8388984B2 (en) | 2006-05-17 | 2013-03-05 | Da Volterra | Site-specific intestinal delivery of adsorbents, alone or in combination with degrading molecules |
WO2007132022A2 (en) * | 2006-05-17 | 2007-11-22 | Da Volterra | Site-specific intestinal delivery of adsorbents, alone or in combination with degrading molecules |
US20080089942A1 (en) * | 2006-08-17 | 2008-04-17 | Xavier Frapaise | Use of adsorbent carbon microspheres to treat intestinal bacterial infections |
US9132142B2 (en) | 2007-09-07 | 2015-09-15 | The General Hospital Corporation | Use of secretor, Lewis and sialyl antigen levels in clinical samples as predictors of risk for disease |
US9132143B2 (en) | 2007-09-07 | 2015-09-15 | The General Hospital Corporation | Use of secretor, lewis and sialyl antigen levels in clinical samples as predictors of risk for disease |
US9034847B2 (en) * | 2009-07-06 | 2015-05-19 | Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US20120202753A1 (en) * | 2009-07-06 | 2012-08-09 | Children's Hospital Medical Center D/B/A Cincinnati Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US10098903B2 (en) | 2009-07-06 | 2018-10-16 | Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US11058697B2 (en) | 2009-07-06 | 2021-07-13 | Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US11324765B2 (en) | 2009-07-06 | 2022-05-10 | Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US12171773B2 (en) | 2009-07-06 | 2024-12-24 | Children's Hospital Medical Center | Inhibiting inflammation with milk oligosaccharides |
US10626460B2 (en) | 2013-02-21 | 2020-04-21 | Children's Hospital Medical Center | Use of glycans and glycosyltransferases for diagnosing/monitoring inflammatory bowel disease |
US10857167B2 (en) | 2015-04-28 | 2020-12-08 | Children's Hospital Medical Center | Use of oligosaccharide compositions to enhance weight gain |
Also Published As
Publication number | Publication date |
---|---|
NZ279180A (en) | 1997-10-24 |
ZA95630B (en) | 1995-10-05 |
AU1572795A (en) | 1995-08-29 |
IL112428A0 (en) | 1995-03-30 |
ATE267614T1 (en) | 2004-06-15 |
DE69533084T2 (en) | 2005-06-09 |
MX197129B (en) | 2000-06-23 |
DE69533084D1 (en) | 2004-07-01 |
KR970701064A (en) | 1997-03-17 |
IL112428A (en) | 1999-08-17 |
CN1140415A (en) | 1997-01-15 |
EP0744959B1 (en) | 2004-05-26 |
WO1995021628A1 (en) | 1995-08-17 |
NO963378L (en) | 1996-08-13 |
CA2181359C (en) | 2001-07-03 |
JP4122052B2 (en) | 2008-07-23 |
NO963378D0 (en) | 1996-08-13 |
CN1131070C (en) | 2003-12-17 |
US5635606A (en) | 1997-06-03 |
CA2181359A1 (en) | 1995-08-17 |
JPH09508631A (en) | 1997-09-02 |
EP0744959A1 (en) | 1996-12-04 |
AU698275B2 (en) | 1998-10-29 |
MX9603403A (en) | 1998-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5484773A (en) | Treatment of antibiotic associated diarrhea | |
US6013635A (en) | Treatment of C. difficile toxin B associated conditions | |
MXPA96003403A (en) | Treatment of diarrhea associated with antibioti | |
AU705012B2 (en) | Treatment of traveller's diarrhea | |
US5627163A (en) | Treatment of traveller's diarrhea | |
US6358930B1 (en) | Treatment of C. difficile toxin B associated conditions | |
US5811409A (en) | Treatment of cholera | |
US6069137A (en) | Treatment of traveller's diarrhea | |
AU704203B2 (en) | Treatment of cholera | |
US5891860A (en) | Treatment of traveller's diarrhea | |
US5939397A (en) | Treatment of cholera | |
NZ332531A (en) | Oligosaccharide-peptide conjugate and use in treating cholera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALBERTA RESEARCH COUNCIL, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEERZE, LOUIS D.;ARMSTRONG, GLEN D.;REEL/FRAME:006940/0634 Effective date: 19940318 |
|
AS | Assignment |
Owner name: SYNSORB BIOTECH INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALBERTA RESEARCH COUNCIL;REEL/FRAME:007663/0435 Effective date: 19950915 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GATX/MM VENTURE FINANCE PARTNERSHIP, CANADA Free format text: SECURITY INTEREST;ASSIGNOR:SYNSORB BIOTECH, INC.;REEL/FRAME:009798/0908 Effective date: 19981222 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: ILYPSA, INC., CALIFORNIA Free format text: CONFIRMATORY PATENT ASSIGNMENT AGREEMENT;ASSIGNOR:ITERATION ENERGY, LTD.;REEL/FRAME:018951/0237 Effective date: 20061206 |
|
FPAY | Fee payment |
Year of fee payment: 12 |