US5772832A - Process for etching oxides in an electromagnetically coupled planar plasma apparatus - Google Patents
Process for etching oxides in an electromagnetically coupled planar plasma apparatus Download PDFInfo
- Publication number
- US5772832A US5772832A US08/835,091 US83509197A US5772832A US 5772832 A US5772832 A US 5772832A US 83509197 A US83509197 A US 83509197A US 5772832 A US5772832 A US 5772832A
- Authority
- US
- United States
- Prior art keywords
- plasma
- ring
- fluorine
- silicon
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005530 etching Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title description 7
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 38
- 239000011737 fluorine Substances 0.000 claims abstract description 37
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000002516 radical scavenger Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 22
- 239000007787 solid Chemical group 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000002000 scavenging effect Effects 0.000 claims 2
- 150000002500 ions Chemical class 0.000 claims 1
- 238000001020 plasma etching Methods 0.000 claims 1
- 239000011343 solid material Substances 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 16
- 239000002245 particle Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 23
- 235000012431 wafers Nutrition 0.000 description 6
- 230000005672 electromagnetic field Effects 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32853—Hygiene
- H01J37/32871—Means for trapping or directing unwanted particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
- H01J37/32165—Plural frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32522—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F2029/143—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
- H01J2237/3343—Problems associated with etching
- H01J2237/3345—Problems associated with etching anisotropy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
- H01J2237/3343—Problems associated with etching
- H01J2237/3346—Selectivity
Definitions
- This invention relates to an improved process and apparatus for etching oxides in an electromagnetically coupled planar plasma apparatus.
- U.S. Pat. No. 4,948,458 to Ogle describes an apparatus for producing planar plasmas that can operate over a wide pressure range.
- the apparatus is a vacuum chamber having a dielectric window or shield in one wall of the chamber.
- a planar coil, outside of the chamber and proximate to the dielectric shield, and an RF source is coupled to the coil.
- the chamber is also fitted with a port for the inlet of plasma precursor gases into the chamber, and a port for ingress and egress of a substrate to be processed, as well as a support for the substrate parallel to the dielectric window.
- the above plasma reactor is useful for etching materials such as aluminum, but it has limitations with respect to etching oxides such as silicon oxide, which are required in the manufacture of semiconductor devices.
- Silicon oxide films and layers are applied to various substrates during the manufacture of silicon devices; including silicon, metal layers, silicon nitride and the like.
- a photoresist is deposited over the silicon oxide layer to be etched and patterned, and the silicon oxide etched with a fluorohydrocarbon gas such as CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 and the like.
- a via in a silicon oxide layer over polysilicon may be etched and the via later filled in with a conductor to make contact between the underlying polysilicon and a conductive layer overlying the silicon oxide.
- the etch process has several stringent requirements; the sidewalls of the vias must be straight (anisotropic etch) and the etching must be selective with respect to the overlying photoresist layer and the underlying material, i.e., the etch process must etch the silicon oxide layer at least at a faster rate than overlying and underlying layers, and preferably the selectivity should be higher than about 10:1.
- Microloading for purposes herein is defined as ##EQU1##
- the etch reactor of Ogle while useful to etch conductive metal layers, cannot meet the above-described etch requirements for oxides such as silicon oxide.
- silicon oxide is etched with fluorine-containing etch gases, as noted above.
- Silicon oxide is etched with poor selectivity; using gases with a high C:F ratio, or gases containing hydrogen raises selectivity but sacrifices etch rate and produces tapered profiles and microloading.
- gases with a high C:F ratio, or gases containing hydrogen raises selectivity but sacrifices etch rate and produces tapered profiles and microloading.
- Fluorohydrocarbon etch gases in addition form polymeric solids that can form particles which deposit on the substrate, causing contamination of the substrate during the etch process.
- FIG. 1 is a cross sectional view of the apparatus of the invention.
- FIG. 2 is a schematic illustration of the circuitry for the apparatus of FIG. 1.
- FIG. 3 is a schematic view illustrating the electromagnetic field profile produced by the apparatus of FIG. 1.
- a plasma treatment apparatus 10 suitable for etching single semiconductor wafers includes a vacuum chamber 12 having an access port 14 in an upper wall 16 of the chamber 12.
- a dielectric shield 18 is disposed below the upper wall 16 and extends across the access port 14. The dielectric shield 18 is sealed to the upper wall 16 to define the vacuum sealable chamber 12.
- the chamber 12 also has a port 17 for admittance of plasma precursor gases to the chamber 12.
- a planar coil 20 is disposed within the access port 14 adjacent to the dielectric shield 18.
- the coil 20 is formed as a spiral having a center tap 22 and an outer tap 24.
- the plane of the coil 20 is oriented parallel to both the dielectric shield 18 and a support 13 for a wafer 15 to be processed in the chamber 12.
- the coil 20 is thus able to produce a planar plasma within the chamber 12 which is parallel to the wafer.
- the distance between the coil 20 and the support surface 13 is usually in the range from about 3-15 cm and can be adjusted.
- a scavenger for fluorine illustrated as a silicon article 26, is situate between the support surface 13 and proximate to the dielectric shield 18. Thus the fluorine scavenger is in or near the generated plasma.
- the planar coil 20 is driven by an RF generator 30 of the type which can operate at a frequency in the range from about 100 KHz up to 100 MHz, and preferably at less than or equal to about 13.56 MHz.
- the output of the generator 30 is fed by a coaxial cable 32 to a matching circuit 34.
- the matching circuit 34 includes a primary coil 36 and a secondary loop 38 which may be positioned to allow effective coupling of the circuit and for loading of the circuit at the frequency of operation.
- the primary coil 36 may be mounted on a disk 40 which can rotate about a vertical axis 42 to adjust the coupling.
- a variable capacitor 44 is in series with the secondary loop 38 to adjust the circuit resonant frequency with the frequency output of the RF generator 30. Impedance matching maximizes the efficiency of power transfer to the planar coil 20.
- Additional capacitance 46 may be provided in the primary circuit to cancel part of the inductive reactance of the coil 36 in the circuit.
- An RF bias power can be applied to the substrate via the substrate support 13 when etching oxides in the chamber 12.
- a second RF signal may be passed from the RF bias 30 or a separate RF source (not shown) may be connected to the substrate support 13.
- the walls of the chamber 12 act as the grounded electrode in that case.
- Another alternative is to use the planar coil, or the silicon or other solid fluorine scavenger article as a counterelectrode.
- the RF bias power controls the substrate sheath voltage.
- the planar coil 20 induces an electromagnetic field which penetrates the dielectric shield 18 and has a field strength profile 60 as shown in broken line.
- the uniform electromagnetic field provides a uniform circulating field of electrons in the electromagnetic field region which impact the precursor gas molecules, creating plasma species within the plasma region. Because there will be little or no impact on the substrate in the non-planar direction, except as deliberately caused with RF bias power, the reactive plasma species will cause little damage to the wafer.
- the fluorine scavenger when it is a solid article, should be situate above and parallel to the surface being etched and adjacent to the dielectric shield for maximum effectiveness and good uniformity over large substrates, such as 200 mm diameter silicon wafers.
- the fluorine scavenger When it is a solid article, such as silicon plate 26, the fluorine scavenger must be placed and sized so that it will not interfere with the RF induction field generated through the dielectric shield. This can be done by considering the thickness of the solid article, its resistivity as a function of temperature and the frequency of the RF power to be inductively coupled to the coil.
- the RF power frequency and the article thickness and resistivity must be chosen so that at the highest solid article operating temperature, when its resistivity is lowest, the skin depth of the RF electromagnetic field in the fluorine scavenger is large with respect to the article thickness. Typically this requires a low frequency, less than 13.56 MHz operation, with, for example, thin silicon plates of less than several millimeters thickness.
- the resistivity of the solid scavenger source also can be varied, such as by providing a doped silicon plate, because the dopants will decrease the silicon resistivity at operating temperatures of up to several hundred degrees centigrade. In order to provide process stability, temperature control of the scavenger source can also be provided.
- the present process is predicated on the fact that when a fluorohydrocarbon precursor gas is exposed to a plasma generating field, various fragments are generated, including F, CF and CF 2 radicals.
- the free fluorine etches oxides such as silicon oxide, but other species form C-F polymers, generally containing about 50% of fluorine, that can deposit onto the sidewalls of the etched via and also act to protect underlying and overlying layers from being etched.
- this polymer is attacked by oxygen, generated by the silicon oxide, and also by free fluorine, and thus the selectivity between silicon oxide and other materials on the substrate being etched is not high.
- the scavenger takes up free fluorine, thus reducing attack of the substrate by free fluorine.
- the protective polymer becomes carbon-rich, e.g., contains only about 40% by weight of fluorine.
- the scavenger for fluorine can most easily be provided in the form of a solid silicon article, e.g., a plate or slice, in or near the plasma.
- other sources of silicon can be provided, such as silane or other silicon-containing gases including TEOS, diethyl silane, tetrafluorosilane and the like, added to the plasma precursor gases.
- Compounds of carbon are also suitable scavengers for fluorine.
- a carbon-rich gas such as benzene (C 6 H 6 ) or acetylene (C 2 H 2 ) can be added to the plasma precursor gases.
- a solid carbon-containing compound such as graphite or silicon carbide can also be used and substituted for a silicon plate.
- the thickness of the carbon-containing article must be small as compared to the skin depth of the applied RF power at the temperature of use. If the fluorine scavenger source is located outside of the plasma region, it can be heated to a temperature that will pass free silicon or carbon atoms into the plasma. In such case a means of heating the silicon or carbon source can also be provided.
- the shape of the solid article can be a plate, a ring or a cylinder, for example.
- the invention has been described in terms of particular embodiments, the invention is not meant to be so limited.
- the fluorine scavenger can be placed in alternate locations, such as in a ring around the substrate or at an edge of the dielectric window.
- the RF induction field need not penetrate the solid fluorine scavenger, and the requirement of large RF skin depth in solid fluorine scavengers, as described hereinabove, is not required.
- Other variations of placement and materials will suggest themselves to one skilled in the art and are to be included herein. The invention is only to be limited by the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Drying Of Semiconductors (AREA)
Abstract
In an apparatus for producing an electromagnetically coupled planar plasma comprising a chamber having a dielectric shield in a wall thereof and a planar coil outside of said chamber and adjacent to said window coupled to a radio frequency source, the improvement whereby a scavenger for fluorine is mounted in or added to said chamber. When a silicon oxide is etched with a plasma of a fluorohydrocarbon gas, the fluorine scavenger reduces the free fluorine radicals, thereby improving the selectivity and anisotropy of etching and improving the etch rate while reducing particle formation.
Description
This application is a divisional of pending application Ser. No. 08/762,464 filed Dec. 9, 1996, which is a continuation of application Ser. No. 08/289,336 filed Aug. 11, 1994, abandoned, which is a continuation of application Ser. No. 07/984,045 filed Dec. 1, 1992, abandoned, which is a continuation-in-part of application Ser. No. 07/722,340 filed Jun. 27, 1991, abandoned.
This invention relates to an improved process and apparatus for etching oxides in an electromagnetically coupled planar plasma apparatus.
U.S. Pat. No. 4,948,458 to Ogle describes an apparatus for producing planar plasmas that can operate over a wide pressure range. The apparatus is a vacuum chamber having a dielectric window or shield in one wall of the chamber. A planar coil, outside of the chamber and proximate to the dielectric shield, and an RF source is coupled to the coil. The chamber is also fitted with a port for the inlet of plasma precursor gases into the chamber, and a port for ingress and egress of a substrate to be processed, as well as a support for the substrate parallel to the dielectric window. When an RF current is applied to the coil, a changing magnetic field is induced which extends inside the chamber through the dielectric shield, inducing a circular flow of electrons within the processing region of the chamber. This induced circular electric field is substantially in a plane parallel to the planar coil, which reduces the transfer of kinetic energy in the non-planar direction. The substrate to be etched is also mounted in the direction of the plane of the plasma and thus the velocity component of charged particles in the non-planar direction with respect to the substrate during processing is minimized, and the treatment on the substrate is generally limited to the chemical interaction of the plasma species with the substrate, except in the case where RF bias is applied to the substrate with respect to a grounded electrode or chamber. The entire disclosure of U.S. Pat. No. 4,948,458 is incorporated herein by reference.
The above plasma reactor is useful for etching materials such as aluminum, but it has limitations with respect to etching oxides such as silicon oxide, which are required in the manufacture of semiconductor devices. Silicon oxide films and layers, for example, are applied to various substrates during the manufacture of silicon devices; including silicon, metal layers, silicon nitride and the like. Typically a photoresist is deposited over the silicon oxide layer to be etched and patterned, and the silicon oxide etched with a fluorohydrocarbon gas such as CF4, C2 F6, C3 F8, CHF3 and the like. For example, a via in a silicon oxide layer over polysilicon may be etched and the via later filled in with a conductor to make contact between the underlying polysilicon and a conductive layer overlying the silicon oxide. In order to fill in vias, which are becoming smaller and deeper, the etch process has several stringent requirements; the sidewalls of the vias must be straight (anisotropic etch) and the etching must be selective with respect to the overlying photoresist layer and the underlying material, i.e., the etch process must etch the silicon oxide layer at least at a faster rate than overlying and underlying layers, and preferably the selectivity should be higher than about 10:1. For other semiconductor devices and arrays, large and small features are present and must be etched at the same time, requiring that large and small features in the same material, e.g., silicon oxide, be etched at the same rate, i.e., without microloading. Microloading for purposes herein is defined as ##EQU1##
Still further, since silicon oxide layers are generally quite thick, high etch rates are also desirable, particularly when single wafer processing is being performed (as opposed to batch-type processing) to permit high throughput.
The etch reactor of Ogle, while useful to etch conductive metal layers, cannot meet the above-described etch requirements for oxides such as silicon oxide. In general silicon oxide is etched with fluorine-containing etch gases, as noted above. Silicon oxide is etched with poor selectivity; using gases with a high C:F ratio, or gases containing hydrogen raises selectivity but sacrifices etch rate and produces tapered profiles and microloading. Thus merely increasing the carbon:fluorine ratio of the etch gas, or increasing the gas flow rates, increases the taper of the sidewalls, increases microloading and reduces the etch rate. Fluorohydrocarbon etch gases in addition form polymeric solids that can form particles which deposit on the substrate, causing contamination of the substrate during the etch process.
Thus a means for improving etching of oxide films or layers in the above-described electromagnetically coupled planar plasma equipment would be highly desirable.
We have found that the addition of a scavenger for fluorine in the electromagnetically coupled planar plasma apparatus improves the etching of oxides with fluorohydrocarbon etchants with respect to the selectivity of etching of the oxide, gives improved anisotropy and improved etch rates.
FIG. 1 is a cross sectional view of the apparatus of the invention.
FIG. 2 is a schematic illustration of the circuitry for the apparatus of FIG. 1.
FIG. 3 is a schematic view illustrating the electromagnetic field profile produced by the apparatus of FIG. 1.
The invention will be further described with reference to FIG. 1. A plasma treatment apparatus 10 suitable for etching single semiconductor wafers includes a vacuum chamber 12 having an access port 14 in an upper wall 16 of the chamber 12. A dielectric shield 18 is disposed below the upper wall 16 and extends across the access port 14. The dielectric shield 18 is sealed to the upper wall 16 to define the vacuum sealable chamber 12. The chamber 12 also has a port 17 for admittance of plasma precursor gases to the chamber 12.
A planar coil 20 is disposed within the access port 14 adjacent to the dielectric shield 18. The coil 20 is formed as a spiral having a center tap 22 and an outer tap 24. The plane of the coil 20 is oriented parallel to both the dielectric shield 18 and a support 13 for a wafer 15 to be processed in the chamber 12. The coil 20 is thus able to produce a planar plasma within the chamber 12 which is parallel to the wafer. The distance between the coil 20 and the support surface 13 is usually in the range from about 3-15 cm and can be adjusted. A scavenger for fluorine, illustrated as a silicon article 26, is situate between the support surface 13 and proximate to the dielectric shield 18. Thus the fluorine scavenger is in or near the generated plasma.
Referring now to FIGS. 1 and 2, the planar coil 20 is driven by an RF generator 30 of the type which can operate at a frequency in the range from about 100 KHz up to 100 MHz, and preferably at less than or equal to about 13.56 MHz. The output of the generator 30 is fed by a coaxial cable 32 to a matching circuit 34. The matching circuit 34 includes a primary coil 36 and a secondary loop 38 which may be positioned to allow effective coupling of the circuit and for loading of the circuit at the frequency of operation. The primary coil 36 may be mounted on a disk 40 which can rotate about a vertical axis 42 to adjust the coupling. A variable capacitor 44 is in series with the secondary loop 38 to adjust the circuit resonant frequency with the frequency output of the RF generator 30. Impedance matching maximizes the efficiency of power transfer to the planar coil 20. Additional capacitance 46 may be provided in the primary circuit to cancel part of the inductive reactance of the coil 36 in the circuit.
An RF bias power can be applied to the substrate via the substrate support 13 when etching oxides in the chamber 12. A second RF signal may be passed from the RF bias 30 or a separate RF source (not shown) may be connected to the substrate support 13. The walls of the chamber 12 act as the grounded electrode in that case. Another alternative is to use the planar coil, or the silicon or other solid fluorine scavenger article as a counterelectrode. The RF bias power controls the substrate sheath voltage.
Referring now to FIG. 3, the planar coil 20 induces an electromagnetic field which penetrates the dielectric shield 18 and has a field strength profile 60 as shown in broken line. The uniform electromagnetic field provides a uniform circulating field of electrons in the electromagnetic field region which impact the precursor gas molecules, creating plasma species within the plasma region. Because there will be little or no impact on the substrate in the non-planar direction, except as deliberately caused with RF bias power, the reactive plasma species will cause little damage to the wafer.
The fluorine scavenger, when it is a solid article, should be situate above and parallel to the surface being etched and adjacent to the dielectric shield for maximum effectiveness and good uniformity over large substrates, such as 200 mm diameter silicon wafers. When it is a solid article, such as silicon plate 26, the fluorine scavenger must be placed and sized so that it will not interfere with the RF induction field generated through the dielectric shield. This can be done by considering the thickness of the solid article, its resistivity as a function of temperature and the frequency of the RF power to be inductively coupled to the coil. The RF power frequency and the article thickness and resistivity must be chosen so that at the highest solid article operating temperature, when its resistivity is lowest, the skin depth of the RF electromagnetic field in the fluorine scavenger is large with respect to the article thickness. Typically this requires a low frequency, less than 13.56 MHz operation, with, for example, thin silicon plates of less than several millimeters thickness. The resistivity of the solid scavenger source also can be varied, such as by providing a doped silicon plate, because the dopants will decrease the silicon resistivity at operating temperatures of up to several hundred degrees centigrade. In order to provide process stability, temperature control of the scavenger source can also be provided.
The present process is predicated on the fact that when a fluorohydrocarbon precursor gas is exposed to a plasma generating field, various fragments are generated, including F, CF and CF2 radicals. The free fluorine etches oxides such as silicon oxide, but other species form C-F polymers, generally containing about 50% of fluorine, that can deposit onto the sidewalls of the etched via and also act to protect underlying and overlying layers from being etched. However, this polymer is attacked by oxygen, generated by the silicon oxide, and also by free fluorine, and thus the selectivity between silicon oxide and other materials on the substrate being etched is not high. However, when a scavenger for fluorine is provided in the plasma, such as a silicon source, the scavenger takes up free fluorine, thus reducing attack of the substrate by free fluorine. Further, when fewer free fluorine radicals are present in the plasma, the protective polymer becomes carbon-rich, e.g., contains only about 40% by weight of fluorine.
The scavenger for fluorine can most easily be provided in the form of a solid silicon article, e.g., a plate or slice, in or near the plasma. However, other sources of silicon can be provided, such as silane or other silicon-containing gases including TEOS, diethyl silane, tetrafluorosilane and the like, added to the plasma precursor gases. Compounds of carbon are also suitable scavengers for fluorine. For example, a carbon-rich gas such as benzene (C6 H6) or acetylene (C2 H2) can be added to the plasma precursor gases. A solid carbon-containing compound such as graphite or silicon carbide can also be used and substituted for a silicon plate. Again, the thickness of the carbon-containing article must be small as compared to the skin depth of the applied RF power at the temperature of use. If the fluorine scavenger source is located outside of the plasma region, it can be heated to a temperature that will pass free silicon or carbon atoms into the plasma. In such case a means of heating the silicon or carbon source can also be provided. The shape of the solid article can be a plate, a ring or a cylinder, for example.
Although the invention has been described in terms of particular embodiments, the invention is not meant to be so limited. For example, if the spacing between the dielectric window and the substrate is large, so that diffusion of active plasma species to other parts of the chamber can occur, the fluorine scavenger can be placed in alternate locations, such as in a ring around the substrate or at an edge of the dielectric window. In such cases, the RF induction field need not penetrate the solid fluorine scavenger, and the requirement of large RF skin depth in solid fluorine scavengers, as described hereinabove, is not required. Other variations of placement and materials will suggest themselves to one skilled in the art and are to be included herein. The invention is only to be limited by the appended claims.
Claims (19)
1. In an apparatus for plasma etching a substrate comprising a chamber including an inlet for a plasma precursor etch gas and a substrate support for the substrate, the improvement comprising a ring of silicon or carbon-containing material mounted about the substrate.
2. An apparatus according to claim 1 wherein said ring supplied ions into said plasma that enhances selectivity between oxygen-containing and non-oxygen-containing surfaces.
3. An apparatus according to claim 1 wherein said plasma precursor etch gas includes fluorine and said ring provides a scavenger for fluorine into said plasma.
4. An apparatus according to claim 3 wherein the scavenger ring is of silicon.
5. An apparatus according to claim 1 further comprising a heater for controlling the temperature of the ring.
6. An apparatus according to claim 1 wherein an RF power source is coupled to said ring.
7. An apparatus according to claim 4 wherein the temperature of the ring of silicon is such that silicon atoms are generated that can pass into the plasma.
8. An apparatus according to claim 1 further including a capacitive electrode.
9. An apparatus according to claim 1 further including an external antenna for inductively coupling energy into said chamber.
10. An apparatus according to claim 9 wherein said external antenna is parallel to said substrate support.
11. A plasma etch apparatus including a chamber into which RF energy may be coupled to maintain a plasma within said chamber;
a source of plasma precursor etch gas including fluorine;
a substrate support within the chamber for supporting a substrate to be etched in a generally horizontal position;
a ring of a silicon-containing or carbon-containing solid material about the substrate support; and
a heater for said ring so as to provide silicon or carbon atoms to the plasma to scavenge fluorine.
12. A plasma etch reactor comprising
a planar electrode external to said reactor for supplying energy to form a plasma within said reactor,
a substrate support in said reactor for supporting a substrate to be etched generally parallel to said electrode,
an inlet for a plasma precursor gas comprising fluorine, and
a solid ring including carbon or silicon about the substrate support for scavenging fluorine.
13. A reactor according to claim 12 further including a heater for said solid ring.
14. A reactor according to claim 12 wherein said reactor has a dielectric window spaced from and parallel to said substrate support.
15. A reactor according to claim 12 wherein an RF power source is connected to said solid ring.
16. A plasma reactor including
an inlet for passing a plasma precursor gas into said chamber, said plasma precursor gas including fluorine that generates oxide etching and polymer forming species in said plasma that provide selectivity between oxygen-containing and non-oxygen-containing surfaces,
a support for a substrate to be etched in said plasma, and
a ring of a fluorine scavenger about said support to supply fluorine scavenging to said plasma.
17. A reactor according to claim 16 wherein said ring is heated to activate the scavenger.
18. A plasma etch chamber including
a plasma etch gas including fluorine,
a solid scavenger for fluorine of a silicon-containing or carbon-containing material in the form of a ring about a substrate to be etched, and
a heater for said scavenger to increase its temperature to provide silicon or carbon atoms to said plasma.
19. A reactor according to claim 18 wherein said solid scavenger is a ring of silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/835,091 US5772832A (en) | 1991-06-27 | 1997-04-04 | Process for etching oxides in an electromagnetically coupled planar plasma apparatus |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72234091A | 1991-06-27 | 1991-06-27 | |
US98404592A | 1992-12-01 | 1992-12-01 | |
US28933694A | 1994-08-11 | 1994-08-11 | |
US08/762,464 US6217785B1 (en) | 1992-12-01 | 1996-12-09 | Scavenging fluorine in a planar inductively coupled plasma reactor |
US08/835,091 US5772832A (en) | 1991-06-27 | 1997-04-04 | Process for etching oxides in an electromagnetically coupled planar plasma apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/762,464 Division US6217785B1 (en) | 1991-06-27 | 1996-12-09 | Scavenging fluorine in a planar inductively coupled plasma reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
US5772832A true US5772832A (en) | 1998-06-30 |
Family
ID=26965572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/835,091 Expired - Lifetime US5772832A (en) | 1991-06-27 | 1997-04-04 | Process for etching oxides in an electromagnetically coupled planar plasma apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US5772832A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6074514A (en) * | 1998-02-09 | 2000-06-13 | Applied Materials, Inc. | High selectivity etch using an external plasma discharge |
US6095159A (en) * | 1998-01-22 | 2000-08-01 | Micron Technology, Inc. | Method of modifying an RF circuit of a plasma chamber to increase chamber life and process capabilities |
US6136214A (en) * | 1996-04-26 | 2000-10-24 | Hitachi, Ltd. | Plasma processing method and apparatus |
US6225745B1 (en) | 1999-12-17 | 2001-05-01 | Axcelis Technologies, Inc. | Dual plasma source for plasma process chamber |
US20020000423A1 (en) * | 1992-06-15 | 2002-01-03 | Micron Technologies, Inc. | Method for enhancing oxide to nitride selectivity through the use of independent heat control |
US6338313B1 (en) * | 1995-07-19 | 2002-01-15 | Silison Genesis Corporation | System for the plasma treatment of large area substrates |
US6399514B1 (en) | 1991-06-27 | 2002-06-04 | Applied Materials, Inc. | High temperature silicon surface providing high selectivity in an oxide etch process |
US6458723B1 (en) | 1999-06-24 | 2002-10-01 | Silicon Genesis Corporation | High temperature implant apparatus |
US6474258B2 (en) | 1999-03-26 | 2002-11-05 | Tokyo Electron Limited | Apparatus and method for improving plasma distribution and performance in an inductively coupled plasma |
US6494998B1 (en) | 2000-08-30 | 2002-12-17 | Tokyo Electron Limited | Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma using an internal inductive element |
US6514838B2 (en) | 1998-02-17 | 2003-02-04 | Silicon Genesis Corporation | Method for non mass selected ion implant profile control |
US20030042227A1 (en) * | 2001-08-29 | 2003-03-06 | Tokyo Electron Limited | Apparatus and method for tailoring an etch profile |
US6764606B2 (en) | 1999-08-31 | 2004-07-20 | Tokyo Electron Limited | Method and apparatus for plasma processing |
US20040175944A1 (en) * | 1998-10-14 | 2004-09-09 | Tokyo Electron Limited | Method and apparatus for surface treatment |
US20040221800A1 (en) * | 2001-02-27 | 2004-11-11 | Tokyo Electron Limited | Method and apparatus for plasma processing |
US20080257261A1 (en) * | 2007-04-22 | 2008-10-23 | Applied Materials, Inc. | Plasma processing apparatus |
US20080260966A1 (en) * | 2007-04-22 | 2008-10-23 | Applied Materials, Inc. | Plasma processing method |
US20110205265A1 (en) * | 2010-02-23 | 2011-08-25 | Koji Furukawa | Abnormality judgment apparatus and abnormality judgment method of liquid supply system |
US11521828B2 (en) | 2017-10-09 | 2022-12-06 | Applied Materials, Inc. | Inductively coupled plasma source |
US11646179B2 (en) | 2020-09-24 | 2023-05-09 | Samsung Electronics Co., Ltd. | Plasma processing apparatus and plasma processing method |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4350578A (en) * | 1981-05-11 | 1982-09-21 | International Business Machines Corporation | Cathode for etching |
US4427516A (en) * | 1981-08-24 | 1984-01-24 | Bell Telephone Laboratories, Incorporated | Apparatus and method for plasma-assisted etching of wafers |
US4585668A (en) * | 1983-02-28 | 1986-04-29 | Michigan State University | Method for treating a surface with a microwave or UHF plasma and improved apparatus |
US4675073A (en) * | 1986-03-07 | 1987-06-23 | Texas Instruments Incorporated | Tin etch process |
US4711698A (en) * | 1985-07-15 | 1987-12-08 | Texas Instruments Incorporated | Silicon oxide thin film etching process |
US4756810A (en) * | 1986-12-04 | 1988-07-12 | Machine Technology, Inc. | Deposition and planarizing methods and apparatus |
US4786359A (en) * | 1987-06-24 | 1988-11-22 | Tegal Corporation | Xenon enhanced plasma etch |
US4793897A (en) * | 1987-03-20 | 1988-12-27 | Applied Materials, Inc. | Selective thin film etch process |
US4793975A (en) * | 1985-05-20 | 1988-12-27 | Tegal Corporation | Plasma Reactor with removable insert |
US4805016A (en) * | 1986-08-25 | 1989-02-14 | Kabushiki Kaisha Toshiba | Endoscopic system for converting primary color images into hue, saturation and intensity images |
US4855017A (en) * | 1985-05-03 | 1989-08-08 | Texas Instruments Incorporated | Trench etch process for a single-wafer RIE dry etch reactor |
US4918031A (en) * | 1988-12-28 | 1990-04-17 | American Telephone And Telegraph Company,At&T Bell Laboratories | Processes depending on plasma generation using a helical resonator |
US4948458A (en) * | 1989-08-14 | 1990-08-14 | Lam Research Corporation | Method and apparatus for producing magnetically-coupled planar plasma |
US4990229A (en) * | 1989-06-13 | 1991-02-05 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
US5006220A (en) * | 1987-10-26 | 1991-04-09 | Tokyo Ohka Kogyo Co., Ltd. | Electrode for use in the treatment of an object in a plasma |
US5074456A (en) * | 1990-09-18 | 1991-12-24 | Lam Research Corporation | Composite electrode for plasma processes |
US5085727A (en) * | 1990-05-21 | 1992-02-04 | Applied Materials, Inc. | Plasma etch apparatus with conductive coating on inner metal surfaces of chamber to provide protection from chemical corrosion |
US5169487A (en) * | 1990-08-27 | 1992-12-08 | Micron Technology, Inc. | Anisotropic etch method |
US5176790A (en) * | 1991-09-25 | 1993-01-05 | Applied Materials, Inc. | Process for forming a via in an integrated circuit structure by etching through an insulation layer while inhibiting sputtering of underlying metal |
US5226967A (en) * | 1992-05-14 | 1993-07-13 | Lam Research Corporation | Plasma apparatus including dielectric window for inducing a uniform electric field in a plasma chamber |
EP0552491A1 (en) * | 1992-01-24 | 1993-07-28 | Applied Materials, Inc. | Plasma etch process |
US5423945A (en) * | 1992-09-08 | 1995-06-13 | Applied Materials, Inc. | Selectivity for etching an oxide over a nitride |
-
1997
- 1997-04-04 US US08/835,091 patent/US5772832A/en not_active Expired - Lifetime
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4350578A (en) * | 1981-05-11 | 1982-09-21 | International Business Machines Corporation | Cathode for etching |
US4427516A (en) * | 1981-08-24 | 1984-01-24 | Bell Telephone Laboratories, Incorporated | Apparatus and method for plasma-assisted etching of wafers |
US4585668A (en) * | 1983-02-28 | 1986-04-29 | Michigan State University | Method for treating a surface with a microwave or UHF plasma and improved apparatus |
US4855017A (en) * | 1985-05-03 | 1989-08-08 | Texas Instruments Incorporated | Trench etch process for a single-wafer RIE dry etch reactor |
US4793975A (en) * | 1985-05-20 | 1988-12-27 | Tegal Corporation | Plasma Reactor with removable insert |
US4711698A (en) * | 1985-07-15 | 1987-12-08 | Texas Instruments Incorporated | Silicon oxide thin film etching process |
US4675073A (en) * | 1986-03-07 | 1987-06-23 | Texas Instruments Incorporated | Tin etch process |
US4805016A (en) * | 1986-08-25 | 1989-02-14 | Kabushiki Kaisha Toshiba | Endoscopic system for converting primary color images into hue, saturation and intensity images |
US4756810A (en) * | 1986-12-04 | 1988-07-12 | Machine Technology, Inc. | Deposition and planarizing methods and apparatus |
US4793897A (en) * | 1987-03-20 | 1988-12-27 | Applied Materials, Inc. | Selective thin film etch process |
US4786359A (en) * | 1987-06-24 | 1988-11-22 | Tegal Corporation | Xenon enhanced plasma etch |
US5006220A (en) * | 1987-10-26 | 1991-04-09 | Tokyo Ohka Kogyo Co., Ltd. | Electrode for use in the treatment of an object in a plasma |
US4918031A (en) * | 1988-12-28 | 1990-04-17 | American Telephone And Telegraph Company,At&T Bell Laboratories | Processes depending on plasma generation using a helical resonator |
US4990229A (en) * | 1989-06-13 | 1991-02-05 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
US4948458A (en) * | 1989-08-14 | 1990-08-14 | Lam Research Corporation | Method and apparatus for producing magnetically-coupled planar plasma |
US5085727A (en) * | 1990-05-21 | 1992-02-04 | Applied Materials, Inc. | Plasma etch apparatus with conductive coating on inner metal surfaces of chamber to provide protection from chemical corrosion |
US5169487A (en) * | 1990-08-27 | 1992-12-08 | Micron Technology, Inc. | Anisotropic etch method |
US5074456A (en) * | 1990-09-18 | 1991-12-24 | Lam Research Corporation | Composite electrode for plasma processes |
US5176790A (en) * | 1991-09-25 | 1993-01-05 | Applied Materials, Inc. | Process for forming a via in an integrated circuit structure by etching through an insulation layer while inhibiting sputtering of underlying metal |
EP0552491A1 (en) * | 1992-01-24 | 1993-07-28 | Applied Materials, Inc. | Plasma etch process |
US5226967A (en) * | 1992-05-14 | 1993-07-13 | Lam Research Corporation | Plasma apparatus including dielectric window for inducing a uniform electric field in a plasma chamber |
US5423945A (en) * | 1992-09-08 | 1995-06-13 | Applied Materials, Inc. | Selectivity for etching an oxide over a nitride |
Non-Patent Citations (10)
Title |
---|
Bariya et al, "The Etching of CHF3 plasma polymer in fluorine-containing discharges", J. Vac. Sci. Technol. B9(1) Jan./Feb. 1991, pp. 1-7. |
Bariya et al, The Etching of CHF 3 plasma polymer in fluorine containing discharges , J. Vac. Sci. Technol. B9(1) Jan./Feb. 1991, pp. 1 7. * |
Coburn, "Increasing the etch rate ratio of SiO2 /Si in flurocarbon plasma etching", IBM Tech. Discl. Bull. vol. 19, No. 10, Mar. 1977, 1p. |
Coburn, Increasing the etch rate ratio of SiO 2 /Si in flurocarbon plasma etching , IBM Tech. Discl. Bull. vol. 19, No. 10, Mar. 1977, 1p. * |
J. Marks et al, "Introduction of a new high density plasma reactor concept for high aspect ratio oxide etching", SPIE, vol. 1803, 1992, pp. 235-247. |
J. Marks et al, Introduction of a new high density plasma reactor concept for high aspect ratio oxide etching , SPIE, vol. 1803, 1992, pp. 235 247. * |
Matsuo, "Selective Etching of SiO2 relative to Si by plasma reactive sputter etching", J. Vac. Sci. Technol. vol. 17, No. 2 Mar./Apr. 1980, pp. 587-594. |
Matsuo, Selective Etching of SiO 2 relative to Si by plasma reactive sputter etching , J. Vac. Sci. Technol. vol. 17, No. 2 Mar./Apr. 1980, pp. 587 594. * |
Oehrlein et al, "Reactive ion etching related Si surface residues and substrates damage: Their relationship to fundamentalk etching mechanisms", J. Vac.Sci.Technol. A5(4), Jul./Aug. 1987, pp. 1585-1594. |
Oehrlein et al, Reactive ion etching related Si surface residues and substrates damage: Their relationship to fundamentalk etching mechanisms , J. Vac.Sci.Technol. A5(4), Jul./Aug. 1987, pp. 1585 1594. * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399514B1 (en) | 1991-06-27 | 2002-06-04 | Applied Materials, Inc. | High temperature silicon surface providing high selectivity in an oxide etch process |
US20020000423A1 (en) * | 1992-06-15 | 2002-01-03 | Micron Technologies, Inc. | Method for enhancing oxide to nitride selectivity through the use of independent heat control |
US7049244B2 (en) | 1992-06-15 | 2006-05-23 | Micron Technology, Inc. | Method for enhancing silicon dioxide to silicon nitride selectivity |
US6338313B1 (en) * | 1995-07-19 | 2002-01-15 | Silison Genesis Corporation | System for the plasma treatment of large area substrates |
US6632324B2 (en) | 1995-07-19 | 2003-10-14 | Silicon Genesis Corporation | System for the plasma treatment of large area substrates |
US6136214A (en) * | 1996-04-26 | 2000-10-24 | Hitachi, Ltd. | Plasma processing method and apparatus |
US20030098288A1 (en) * | 1996-04-26 | 2003-05-29 | Masahito Mori | Plasma processing method |
US6511608B1 (en) | 1996-04-26 | 2003-01-28 | Hitachi, Ltd. | Plasma processing method |
US6927173B2 (en) | 1996-04-26 | 2005-08-09 | Renesas Technology Corp. | Plasma processing method |
US6503410B1 (en) | 1998-01-22 | 2003-01-07 | Micron Technology, Inc. | Method of modifying an RF circuit of a plasma chamber to increase chamber life and process capabilities |
US6095159A (en) * | 1998-01-22 | 2000-08-01 | Micron Technology, Inc. | Method of modifying an RF circuit of a plasma chamber to increase chamber life and process capabilities |
US6074514A (en) * | 1998-02-09 | 2000-06-13 | Applied Materials, Inc. | High selectivity etch using an external plasma discharge |
US6387288B1 (en) | 1998-02-09 | 2002-05-14 | Applied Materials, Inc. | High selectivity etch using an external plasma discharge |
US6514838B2 (en) | 1998-02-17 | 2003-02-04 | Silicon Genesis Corporation | Method for non mass selected ion implant profile control |
US7146744B2 (en) | 1998-10-14 | 2006-12-12 | Tokyo Electron Limited | Method and apparatus for surface treatment |
US20040175944A1 (en) * | 1998-10-14 | 2004-09-09 | Tokyo Electron Limited | Method and apparatus for surface treatment |
US20040194340A1 (en) * | 1998-10-14 | 2004-10-07 | Tokyo Electron Limited | Method and apparatus for surface treatment |
US7094703B2 (en) | 1998-10-14 | 2006-08-22 | Tokyo Electron Limited | Method and apparatus for surface treatment |
US6474258B2 (en) | 1999-03-26 | 2002-11-05 | Tokyo Electron Limited | Apparatus and method for improving plasma distribution and performance in an inductively coupled plasma |
US6458723B1 (en) | 1999-06-24 | 2002-10-01 | Silicon Genesis Corporation | High temperature implant apparatus |
US6764606B2 (en) | 1999-08-31 | 2004-07-20 | Tokyo Electron Limited | Method and apparatus for plasma processing |
US6225745B1 (en) | 1999-12-17 | 2001-05-01 | Axcelis Technologies, Inc. | Dual plasma source for plasma process chamber |
US6494998B1 (en) | 2000-08-30 | 2002-12-17 | Tokyo Electron Limited | Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma using an internal inductive element |
US20040221800A1 (en) * | 2001-02-27 | 2004-11-11 | Tokyo Electron Limited | Method and apparatus for plasma processing |
US20030042227A1 (en) * | 2001-08-29 | 2003-03-06 | Tokyo Electron Limited | Apparatus and method for tailoring an etch profile |
US20080257261A1 (en) * | 2007-04-22 | 2008-10-23 | Applied Materials, Inc. | Plasma processing apparatus |
US20080260966A1 (en) * | 2007-04-22 | 2008-10-23 | Applied Materials, Inc. | Plasma processing method |
US7972469B2 (en) | 2007-04-22 | 2011-07-05 | Applied Materials, Inc. | Plasma processing apparatus |
US20110205265A1 (en) * | 2010-02-23 | 2011-08-25 | Koji Furukawa | Abnormality judgment apparatus and abnormality judgment method of liquid supply system |
EP2361771A3 (en) * | 2010-02-23 | 2011-12-28 | Fujifilm Corporation | Abnormality judgment apparatus and abnormality judgment method of liquid supply system |
US8567895B2 (en) | 2010-02-23 | 2013-10-29 | Fujifilm Corporation | Abnormality judgment apparatus and abnormality judgment method of liquid supply system |
US11521828B2 (en) | 2017-10-09 | 2022-12-06 | Applied Materials, Inc. | Inductively coupled plasma source |
US12217938B2 (en) | 2017-10-09 | 2025-02-04 | Applied Materials, Inc. | To an inductively coupled plasma source |
US11646179B2 (en) | 2020-09-24 | 2023-05-09 | Samsung Electronics Co., Ltd. | Plasma processing apparatus and plasma processing method |
US12020909B2 (en) | 2020-09-24 | 2024-06-25 | Samsung Electronics Co., Ltd. | Plasma processing apparatus and plasma processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6217785B1 (en) | Scavenging fluorine in a planar inductively coupled plasma reactor | |
US5772832A (en) | Process for etching oxides in an electromagnetically coupled planar plasma apparatus | |
US6077384A (en) | Plasma reactor having an inductive antenna coupling power through a parallel plate electrode | |
US6054013A (en) | Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density | |
US6572732B2 (en) | Parallel-plate electrode plasma reactor having an inductive antenna coupling power through a parallel plate electrode | |
US6444084B1 (en) | Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna | |
US5888414A (en) | Plasma reactor and processes using RF inductive coupling and scavenger temperature control | |
US5300460A (en) | UHF/VHF plasma for use in forming integrated circuit structures on semiconductor wafers | |
US5824605A (en) | Gas dispersion window for plasma apparatus and method of use thereof | |
JP4891287B2 (en) | Plasma processing chamber, chamber element and manufacturing method thereof | |
KR100498585B1 (en) | A method of processing a semiconductor workpiece in a plasma reactor chamber | |
EP0376546B1 (en) | Processes depending on plasma generation | |
US6423242B1 (en) | Etching method | |
JP3987131B2 (en) | Induction enhanced reactive ion etching | |
EP0552491A1 (en) | Plasma etch process | |
EP0489407A2 (en) | Plasma reactor using UHF/VHF resonant antenna source, and processes | |
US6090303A (en) | Process for etching oxides in an electromagnetically coupled planar plasma apparatus | |
EP0718876B1 (en) | Improved plasma etching method | |
KR100842947B1 (en) | Plasma processing method and plasma processing apparatus | |
JPH06112166A (en) | Apparatus and method for plasma reaction using electromagnetic rf coupling | |
EP0715335A1 (en) | System for processing a workpiece in a plasma | |
WO2009070562A1 (en) | Plasma control using dual cathode frequency mixing | |
US6972264B2 (en) | Method and apparatus for etching Si | |
JP2001053061A (en) | Dry etching method | |
JP2001044173A (en) | Etching method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |