US5824053A - Helical mesh endoprosthesis and methods of use - Google Patents
Helical mesh endoprosthesis and methods of use Download PDFInfo
- Publication number
- US5824053A US5824053A US08/820,212 US82021297A US5824053A US 5824053 A US5824053 A US 5824053A US 82021297 A US82021297 A US 82021297A US 5824053 A US5824053 A US 5824053A
- Authority
- US
- United States
- Prior art keywords
- stent
- body lumen
- coil
- turns
- helical mesh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 6
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000008602 contraction Effects 0.000 claims description 3
- 239000000560 biocompatible material Substances 0.000 claims description 2
- 238000013461 design Methods 0.000 description 14
- 208000031481 Pathologic Constriction Diseases 0.000 description 7
- 230000005012 migration Effects 0.000 description 7
- 238000013508 migration Methods 0.000 description 7
- 230000036262 stenosis Effects 0.000 description 7
- 208000037804 stenosis Diseases 0.000 description 7
- 238000004904 shortening Methods 0.000 description 6
- 230000002792 vascular Effects 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 208000007536 Thrombosis Diseases 0.000 description 3
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 3
- 210000001715 carotid artery Anatomy 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000010102 embolization Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 208000012287 Prolapse Diseases 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 210000003752 saphenous vein Anatomy 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 208000028373 Neck injury Diseases 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012781 shape memory material Substances 0.000 description 1
- 229920000431 shape-memory polymer Polymers 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/92—Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
Definitions
- the present invention relates to vascular prostheses, commonly referred to as "stents," for maintaining the patency of a body vessel following a dilatation procedure, such as percutaneous transluminal coronary angioplasty. More specifically, the present invention relates to vascular prostheses formed of helical mesh coils, especially for use in exposed vessels and saphenous vein grafts.
- a number of vascular prostheses are known for use in maintaining the patency of a body lumen following a dilatation procedure.
- a balloon catheter is inserted transluminally to the site of a stenosis within an artery, and the balloon is dilated to crack the plaque lining the artery.
- a vascular prosthesis commonly referred to as a stent
- Palmaz stent sold by Cordis Inc., Miami Lakes, Fla.
- the Gianturco-Rubin stent sold by Cook Cardiology, Inc., Indianapolis, Ind.
- the Multi-Link stent sold by Advanced Cardiovascular Systems, Inc., Santa Clara, Calif., are commonly used following angioplasty in such a manner.
- plastically deformable stents are used in vessels that are close to the surface of the patient, and therefore are unprotected against crushing blows (such vessels referred to hereinafter as "exposed vessels").
- exposed vessels such vessels referred to hereinafter as "exposed vessels”.
- a plastically deformable stent is used in a carotid artery in the vicinity of the neck, even a minor neck injury could result in the stent collapsing in vivo, with potentially fatal consequences.
- Recent clinical trials of balloon expandable stents in exposed vessels have shown that up to 12% of the patients experience some collapse of the stent due to external forces.
- U.S. Pat. No. 4,655,771 to Wallsten provides a woven wire tubular mesh member which is contracted to its delivery profile by elongating the stent. When the ends of the stent are released, the stent attains its expanded diameter by undergoing a considerable shortening of length.
- Drawbacks inherent in stents of this design include a limited range of diameters at which acceptable radial strength can be achieved, and relatively low longitudinal flexibility.
- the considerable shortening of the stent encountered during deployment can result in lack of precision during stent deployment.
- U.S. Pat. No. 4,665,918 to Garza et al. describes a vascular prosthesis and delivery system for a self-expanding helical coil or coiled sheet.
- the helical coil is held in a constrained shape within an outer sheath of the delivery system, and is deployed by retracting the outer sheath.
- U.S. Pat. No. 5,147,370 to McNamara et al. describes a nitinol stent comprising a helical band having proximal and distal loops which is wound tightly onto a catheter and retained using a mandrel, so that the coil self-expands when released from restraint.
- the device described in the Yachia et al. patent experiences considerable longitudinal shortening during deployment.
- the device includes a further drawback that, as the device expands, the free end of the coil it believed to whip around the catheter at high speed. Because such behavior could dislodge pieces of plaque from the interior of the vessel wall, such stent designs appear unsuitable for use in the carotid arteries and in other vessels in which embolization presents a problem.
- Previously known helical coil stent designs are thought to present a number of other drawbacks as well, such as having limited ranges of expanded diameters, the potential for tilting of coils and prolapse into gaps in a stenotic region, uneven expansion, migration, and thrombosis formation.
- the devices described in the Maass et al. patent are expected to have only a limited range of expanded diameters due to the mechanical characteristics of stainless steel.
- the wire coils of the Yachia et al. device have been observed to expand unevenly, as well as to slip into cracks created in the plaque during the dilatation procedure, thereby creating nonuniform radial strength along the length of the stent and increasing the chance of restenosis.
- the smooth outer wall surface of the stents, as well as the narrowness of individual turns of the stent also is thought to cause slipping and localized migration of turns, further reducing radial strength.
- the potential for individual turns of the coil of the Yachia et al. device to project (either by tilting or overlapping neighboring turns) into the bloodstream enhances the risk for thrombosis. More generally, since the ends of a helical coil stent do not experience the same outward force as full turns of the coil, it is thought that the free ends may also project into the bloodstream, and hence serve as sites for thrombi formation.
- a helical coil stent that overcomes the drawbacks of the previously known stents.
- helical coil stent possessing a high degree of longitudinal flexibility so that it can be advanced through a tortuous body lumen, yet which has high radial strength over a range of expanded diameters and that experiences much less overall shortening during deployment then previously known helical coil stents.
- a stent comprising a self-expanding helical mesh coil having a substantially rectangular cross-section and a band width of at least about one-quarter of the maximum expanded circumference of the stent.
- the helical mesh has a multiplicity of openings forming a lattice which preferably provides about 60% open space or more.
- a lattice refers to an arrangement of the openings wherein there are multiple openings across the width of the band, and the openings in a mid-portion of the band are adjacent to at least three other openings.
- the openings serve to secure the stent within the body lumen, and serve to resist sliding or localized migration of the turns of the stent after deployment.
- the large band width of the helical mesh coil enables the stent to be reduced to its contracted diameter with very few turns, thereby providing controlled expansion without the whipping action associated with previously known stent designs.
- Alternative embodiments of the helical mesh coil stent of the present invention may include specially designed free ends of the stent, which are treated to preferentially overlap neighboring turns of the coil when deployed, thereby ensuring that the free ends of the stent do not project into the body lumen.
- the helical mesh may include integrally formed barbs that, in addition to the multiplicity of openings, induce a ratcheting effect enabling the stent to resist localized compressive forces.
- the helical mesh coil stent is first deployed into a body lumen so that it expands when released to conform to the diameter of the body lumen.
- Delivery apparatus includes a retractable element for restraining either or both ends of the stent during deployment.
- the delivery apparatus also may serve to hold a first end of the stent in engagement with a wall of the body vessel during deployment, thereby enhancing accuracy of placement of the stent.
- a dilatation element (which may be tapered) is then disposed within the stent and expanded, thereby ensuring that the turns of the stent are uniformly expanded into contact with the intima of the body lumen.
- the large band width in conjunction with the multiplicity of openings (and barbs, if present), serve to affix the stent in apposition to the body walls, without tilting or overlap.
- FIG. 1 is a perspective view of an illustrative helical mesh coil stent constructed in accordance present invention
- FIG. 2A is a plan view of a flat strip having a triangular-shaped lattice suitable for forming a helical mesh coil stent in accordance with the invention
- FIG. 2B is plan view of a flat strip having a diamond-shaped lattice suitable for forming a helical mesh coil stent in accordance with the invention
- FIG. 2C is plan view of a flat strip having a rectangular lattice suitable for forming a helical mesh coil stent in accordance with the invention
- FIG. 2D is plan view of a flat strip having a circular lattice suitable for forming a helical mesh coil stent in accordance with the invention
- FIGS. 3A-3E are cross-sectional views of a delivery catheter having retractable and positioning elements suitable for use with the methods of the present invention
- FIGS. 4A-4D are views showing the steps of deploying a stent constructed in accordance with the present invention.
- FIG. 5A is a plan view of a flat strip having plurality of barbs formed in the lattice and tabs that ensure the free ends of the stent are secured when deployed;
- FIG. 5B is an elevation view of the flat strip of FIG. 5A when rolled into a helical mesh coil stent in accordance with the present invention.
- FIG. 6A and 6B are cross-sectional views of a turn of the helical mesh coil stent of the present invention.
- the present invention provides stents for treatment of intraluminal disease that overcome the limitations of previously known helical coil stents.
- an expanding helical mesh coil stent constructed in accordance with the present invention provides high radial strength uniformly over the length of the stent, while reducing the risk of tilted or overlapping coils found in previously known helical coil stent designs.
- the helical mesh coil stent of the present invention is highly flexible when in its contracted state, and highly crush resistant in its expanded state.
- the stent and methods of the present invention are believed to be especially useful in tapered vessels, such as regions of the coronary arteries, the carotid arteries, saphenous vein grafts and biliary ducts.
- Stent 10 constructed in accordance the present invention is described.
- Stent 10 comprises a helical coil formed from a flat sheet having a substantially rectangular cross-section, as shown in FIGS. 2A-2D.
- the stent includes free ends 11 and 12 at the proximal and distal ends of the stent, respectively, and plurality of turns 13 including multiplicity of openings 14.
- a preferred embodiment of stent 10 may be satisfactorily employed in a number of body lumens over a range of expanded diameters, with width w of turns 13 preferably at least one-quarter of the maximum expanded circumference of the stent, or roughly about equal to the maximum expanded diameter d.
- width w of turns 13 preferably at least one-quarter of the maximum expanded circumference of the stent, or roughly about equal to the maximum expanded diameter d.
- the turns may overlap one another when the stent is rolled down to its contracted state, thus reducing the overall length of the stent and improving trackability through tortuous vessels.
- the lengths of the helical mesh coil, the pitch and the number of turns may be varied depending upon the intended application and desired mechanical characteristics of the stent.
- stent 10 includes multiplicity of openings 14 arranged in a lattice that preferably comprises 60% or more of the surface of the stent.
- a lattice refers to an arrangement of the openings wherein there are multiple openings across the width of the stent, and the openings in a mid-portion of the stent are adjacent to at least three other openings.
- openings 14 may be regular polygons, such as triangular-shaped, diamond-shaped, rectangular-shaped or circular-shaped openings, or any combination thereof.
- the diamond-shaped lattice has a metal contact area of about 35% (65% open space); and the rectangular-shaped and circular-shaped lattices have metal contact areas of about 31% and 32% (69% and 68% open space), respectively.
- Openings 14 enable tissue lining the wall of the body lumen to grow through the openings to envelope the stent.
- openings 14 serve to fix the stent in position against localized slipping once the stent has been impressed into the intima of the body lumen using a mechanical expander, as described hereinafter. Based on testing of initial prototype stents 6 mm in diameter and 30 mm long (when deployed) the diamond-shaped lattice of FIG. 2B is thought to provide the highest radial strength.
- Stent 10 generally comprises a thin (about 1-5 mils) flat sheet of a biocompatible material, such as a thermal shape-memory polymer or metal, super-elastic material such as a nickel-titanium alloy, or other biocompatible elastic material such as a stainless steel, tantalum, platinum or tungsten alloy.
- stent 10 comprises a nickel-titanium shape memory alloy having an austenite transition temperature slightly below body temperature.
- Stent 10 is preferably formed from a flat sheet of nickel-titanium alloy, and multiplicity of openings 14 are formed therein by any of a number of conventional metal working processes, including die and punch, laser cutting, or chemical etching.
- a sheet of suitable material is first formed into the shape depicted, for example, in FIG. 2B.
- the sheet is then rolled about a mandrel (indicated by dotted line 15 in FIG. 2B) in a direction A (indicated by arrows in FIG. 2B) to form a coiled tubular member having an expanded shape as shown in FIG. 1.
- the coiled tubular member is then heat treated to activate the shape memory of the material.
- Stent 10 is then rolled to a contracted state for delivery by twisting free ends 11 and 12 in opposite directions.
- stent 10 When contracted, stent 10 may assume either an axially elongated shape, with adjacent turns of the stent lying adjacent to one another, or the adjacent coils may be configured to overlap one another.
- the latter configuration, wherein the coils overlap each other, is believed to be preferable to reduce overall change in the length of the stent during deployment.
- delivery system 20 is similar to that disclosed in Garza et al. U.S. Pat. No. 4,665,918, and includes catheter 21 having central lumen 22 for accepting guide wire 200, nose cone 23 and outer sheath 24.
- Catheter 21 includes recess 25 that cooperates with outer sheath 24 to retain the stent in its contracted state for transluminal delivery.
- delivery system 20 is inserted into a body lumen having a stenosis through a major vessel along a guide wire until the mid-point of the stent is located within the stenosis.
- delivery system 20' includes features 21-25 of delivery system 20 of FIG. 3A and further includes a positioning element consisting of compliant balloon 26 and inflation lumen 27.
- balloon 26 is inflated via inflation lumen 27. Inflation of balloon 26 urges the distal end of the stent into engagement with the wall of the body lumen. When the remaining portion of outer sheath 24 is then withdrawn, balloon 26 prevents axially displacement of the distal end of the stent, thereby ensuring accuracy in the placement of the stent.
- delivery system 20" is similar to that of FIG. 3A but further includes recesses 27 and 28 at either end of recessed portion 25 of length L.
- Delivery system 20" further comprises retractable retaining element 29 disposed within lumen 30.
- Lumen 30 includes opening 30a where retaining element 29 exits lumen 30 and opening 30b where retaining element 29 re-enters lumen 30.
- Recesses 27 and 28 are configured to capture ends 11 and 12 of stent 10 (see FIG. 1), while retractable retaining element 29 loops over and captures an intermediate turn of the helical coil (not shown) against recessed portion 25 of catheter 21.
- retractable element 29 which may be a flexible filament, thread or fine wire of stainless steel or nickel-titanium, serves to retain a stent in its contracted state for delivery.
- retractable element 29 is withdrawn in the proximal direction, thereby permitting the central portion of the stent to expand.
- Delivery catheter 20" therefore enhances the accuracy of the stent placement by enhancing the accuracy of placement of, for example, the mid-section of the stent, as opposed to an end of the stent as in FIG. 3B.
- FIGS. 3D and 3E show alternative embodiments for securing the stent against length L of recessed portion 25 of catheter 21 for transluminal delivery, similar to the locking element disclosed in Sigwart U.S. Pat. No. 5,443,500. Unlike the locking element in the Sigwart patent, however, retaining elements of the present invention not only prevent the stent from unwinding, but also enable the clinician to control the direction of deployment of the stent.
- FIG. 3D separate retaining elements 31 and 33 are employed to secure the distal and proximal ends, respectively, of stent 10 of FIG. 1. Retaining elements 31 and 33 are withdrawn proximally, preferably sequentially, so that the stent uncoils from catheter 21 in a preferred direction.
- a single retaining element 35 is provided that captures both the distal and proximal ends of the stent.
- the stent is deployed in a distal to proximal direction (after removal of outer sheath 24), while the separate retaining elements of the embodiment of FIG. 3D enable the stent to be deployed in either a distal-to-proximal or proximal-to-distal direction.
- compliant balloon 26 of the embodiment of FIG. 3B may be used in conjunction with any of the embodiments of FIGS. 3C-3E.
- helical mesh coil stent 10 of FIG. 2B is shown rolled to its contracted state and disposed within delivery system 20' described hereinabove.
- Delivery system 20' generally is inserted into the body lumen after a dilatation device, such as a balloon catheter, has already been inserted and expanded within body lumen 100 to crack the deposits constituting stenosis 101. It is expected, however, that once the dilatation device is contracted, there may be some recoil of the stenosis, resulting in the bulge illustrated in FIG. 4A.
- sheath 24 of the delivery system is retracted to release a distal portion of helical mesh coil stent 10 into body lumen 100.
- Compliant balloon 26 is then inflated to anchor the distal turn of stent 10 against the inner surface of the body lumen, and sheath 24 is fully retracted.
- FIG. 4B when released from sheath 24, the individual turns of stent 10 unwind to conform to the diameter of the body lumen.
- the segments of the plaque may still result in some unevenness of expansion of the stent (for clarity, this effect is exaggerated in FIG. 4B).
- the stent of the present invention involves many fewer turns than previously known helical coil stents, it is contemplated that the expansion of the stent will not produce the whipping action observed in some previously known stent designs.
- the presence of fewer turns 13, together with the overlap of some of the turns when in the contracted state, is also expected to reduce the extent of shortening of the stent relative to previously known designs, thereby improving the accuracy of the stent placement.
- the use of compliant balloon 26 is further expected to enhance accuracy of the stent placement, since it reduces axial displacement of the distal end of the stent during deployment.
- a mechanical expander in the form of balloon catheter 250 carrying balloon 251, is transluminally inserted within stent 10.
- stent 10 further uncoils so that the stent conforms to the expanded shape of the balloon.
- the step of conforming the helical mesh to the balloon shape involves a slight rotation of the ends 11 and 12 of the stent as the stent unwinds; however, this expansion does not involve plastic deformation of the helical mesh.
- the balloon causes the open lattice of the stent to become embedded in the intima of the body lumen.
- stent 10 retains the shape impressed in it during the step of the balloon expansion, as illustrated in FIG. 4D, and does recoil elastically to the shape assumed when initially released from sheath 24.
- stent 10 is elastically expanded and embedded in the intima of the body wall during dilation of the mechanical expander, the stent retains its elasticity and is capable of withstanding compressive loads without crushing, and without sliding or localized migration of turns 13, even when used in exposed vessels.
- the stent of the present invention preferably comprises a super-elastic shape memory alloy, such as nickel-titanium, the stent may be conformed to a range of body lumen diameters and still provide acceptable radial strength.
- Stent 40 comprises a helical mesh coil having a rectangular lattice (similar to the stent design of FIG. 2C), free ends 41 and 42, and plurality of turns 43. Stent 40 further comprises a multiplicity of barbs 44 integrally formed with the rectangular lattice, so that the barbs project outwardly from the stent when the band is rolled to form a tubular coil. Free ends 41 and 42 also include tabs 45 which overlap the neighboring turns of the stent, thereby fixing the free ends of the stent against the wall of the body lumen.
- Stent 40 of FIGS. 5A and 5B is deployed in a manner similar to that described above with respect to FIGS. 4A to 4D.
- Barbs 44 are formed in the lattice of the helical sheet so that they engage the intima of the vessel wall only if the stent is loaded so as to wind the coil to a smaller diameter than its expanded diameter.
- the barbs are arranged so that when the balloon expands the stent from its initial deployment state in FIG. 4B by slightly unwinding the coil, the barbs do not engage the vessel wall. If however, a load is applied to stent 40 that would tend to reduce the stent wind to a smaller diameter, barbs 44 engage the vessel wall and resist compression of the stent. The barbs therefore provide a ratcheting effect, since they freely permit the stent to be expanded, but resist contraction.
- tabs 45 are treated, for example, by heat treatment during manufacture, to preferentially assume a position in which the tabs extend in an overlapping fashion outside the neighboring turns of the stent.
- the free ends of stent 40 will be permanently affixed to the wall of the body lumen during the step of embedding the stent into the vessel wall with the mechanical expander. Accordingly, the free ends will be prevented from projecting into the body lumen, thus reducing the risk of thrombi formation.
- tabs 45 may be advantageously used on any of the helical mesh coil stents described hereinabove.
- FIGS. 6A and 6B a cross-section of stents 10 and 40 along the viewlines 6--6 is described (in which the internal detail has been omitted for clarity).
- the flat band or sheet from which the stent is formed comprises a rectangular cross-section with square edges 51, while in FIG. 6B, edges 52 of the sheet are rounded.
- the use of a band having rounded edges 52 may be beneficial, for example, to reduce the risk of injuring tissue pinched between gaps that may form between the turns of the coil, especially prior to the step of expanding the stent with the mechanical expander. Because the widths w of the bands in both FIGS. 6A and 6B are much greater than the thicknesses t, both designs constitute substantially rectangular cross-sections within the meaning of the present invention.
- a stent constructed in accordance with the present invention may be disposed in a tapered lumen.
- the mechanical expander may include a slight taper so that when the balloon is expanded, the stent adopts the taper of the balloon when it is embedded in the vessel wall.
- the stent of the present invention may also be formed as a flat tapered strip, i.e., a flat strip having a variable band width along its length. In this case, the stent may be formed into a frustoconical tubular member using a tapered mandrel. After its initial expansion, the resulting stent may then be fully deployed using a tapered mechanical expander.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
Description
Claims (21)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/820,212 US5824053A (en) | 1997-03-18 | 1997-03-18 | Helical mesh endoprosthesis and methods of use |
PCT/US1998/005519 WO1998041170A1 (en) | 1997-03-18 | 1998-03-18 | Helical mesh endoprosthesis and methods of use |
AT98913000T ATE258033T1 (en) | 1997-03-18 | 1998-03-18 | SPIRAL MESH DOPROSTHESIS |
CA002283728A CA2283728C (en) | 1997-03-18 | 1998-03-18 | Helical mesh endoprosthesis and methods of use |
DE69821245T DE69821245T2 (en) | 1997-03-18 | 1998-03-18 | Spiral mesh endoprosthesis |
ES98913000T ES2210734T3 (en) | 1997-03-18 | 1998-03-18 | HELICOIDAL MESH ENDOPROTESIS. |
EP98913000A EP1009326B1 (en) | 1997-03-18 | 1998-03-18 | Helical mesh endoprosthesis |
JP54083998A JP4073499B2 (en) | 1997-03-18 | 1998-03-18 | Spiral mesh endoprosthesis |
US09/047,891 US6425915B1 (en) | 1997-03-18 | 1998-03-25 | Helical mesh endoprosthesis and methods of use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/820,212 US5824053A (en) | 1997-03-18 | 1997-03-18 | Helical mesh endoprosthesis and methods of use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/047,891 Continuation-In-Part US6425915B1 (en) | 1997-03-18 | 1998-03-25 | Helical mesh endoprosthesis and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US5824053A true US5824053A (en) | 1998-10-20 |
Family
ID=25230199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/820,212 Expired - Lifetime US5824053A (en) | 1997-03-18 | 1997-03-18 | Helical mesh endoprosthesis and methods of use |
Country Status (8)
Country | Link |
---|---|
US (1) | US5824053A (en) |
EP (1) | EP1009326B1 (en) |
JP (1) | JP4073499B2 (en) |
AT (1) | ATE258033T1 (en) |
CA (1) | CA2283728C (en) |
DE (1) | DE69821245T2 (en) |
ES (1) | ES2210734T3 (en) |
WO (1) | WO1998041170A1 (en) |
Cited By (299)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5984957A (en) * | 1997-08-12 | 1999-11-16 | Schneider (Usa) Inc | Radially expanded prostheses with axial diameter control |
US6015433A (en) * | 1998-05-29 | 2000-01-18 | Micro Therapeutics, Inc. | Rolled stent with waveform perforation pattern |
WO2000004845A2 (en) * | 1998-07-24 | 2000-02-03 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6048360A (en) * | 1997-03-18 | 2000-04-11 | Endotex Interventional Systems, Inc. | Methods of making and using coiled sheet graft for single and bifurcated lumens |
WO2000027303A2 (en) * | 1998-11-10 | 2000-05-18 | Precision Vascular Systems, Inc. | Micro-machined stent for vessels, body ducts and the like |
WO2000032138A1 (en) * | 1998-12-03 | 2000-06-08 | Medinol Ltd. | Serpentine coiled ladder stent |
WO2000062711A1 (en) * | 1999-04-15 | 2000-10-26 | Smart Therapeutics, Inc. | Intravascular stent and method of treating neurovascualr vessel lesion |
US6156062A (en) * | 1997-12-03 | 2000-12-05 | Ave Connaught | Helically wrapped interlocking stent |
US6210422B1 (en) | 1997-02-20 | 2001-04-03 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US6238430B1 (en) | 1999-02-26 | 2001-05-29 | Vascular Architects, Inc. | Catheter assembly with controlled release endoluminal prosthesis and method for placing |
WO2001056502A1 (en) * | 2000-02-01 | 2001-08-09 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US20010021870A1 (en) * | 1995-03-10 | 2001-09-13 | Edwin Tarun J. | Externally supported graft |
US6331190B1 (en) | 1998-03-04 | 2001-12-18 | Endologix, Inc. | Endoluminal vascular prosthesis |
US20020017503A1 (en) * | 2000-05-19 | 2002-02-14 | Banas Christopher E. | Methods and apparatus for manufacturing an intravascular stent |
US6383171B1 (en) | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US6409750B1 (en) | 1999-02-01 | 2002-06-25 | Board Of Regents, The University Of Texas System | Woven bifurcated and trifurcated stents and methods for making the same |
US6425915B1 (en) * | 1997-03-18 | 2002-07-30 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US6432131B1 (en) * | 1995-01-31 | 2002-08-13 | Boston Scientific Corporation | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US20020143391A1 (en) * | 1998-03-04 | 2002-10-03 | Scimed Life Systems, Inc. | Stent cell configurations |
US20020151954A1 (en) * | 1997-05-02 | 2002-10-17 | Micro Therapeutics, Inc. | Expandable stent apparatus and method |
US6488700B2 (en) | 1999-02-26 | 2002-12-03 | Vascular Architects, Inc. | Endoluminal prosthesis placing method |
US6500202B1 (en) | 1998-12-11 | 2002-12-31 | Endologix, Inc. | Bifurcation graft deployment catheter |
US6503270B1 (en) | 1998-12-03 | 2003-01-07 | Medinol Ltd. | Serpentine coiled ladder stent |
US6508835B1 (en) | 1998-12-11 | 2003-01-21 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6517573B1 (en) | 2000-04-11 | 2003-02-11 | Endovascular Technologies, Inc. | Hook for attaching to a corporeal lumen and method of manufacturing |
US6572648B1 (en) | 2000-06-30 | 2003-06-03 | Vascular Architects, Inc. | Endoluminal prosthesis and tissue separation condition treatment method |
US6585760B1 (en) | 2000-06-30 | 2003-07-01 | Vascular Architects, Inc | AV fistula and function enhancing method |
US20030144724A1 (en) * | 2002-01-29 | 2003-07-31 | Robert Murray | Flared stent and method of use |
US20030216804A1 (en) * | 2002-05-14 | 2003-11-20 | Debeer Nicholas C. | Shape memory polymer stent |
US6656218B1 (en) | 1998-07-24 | 2003-12-02 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6660030B2 (en) | 1998-12-11 | 2003-12-09 | Endologix, Inc. | Bifurcation graft deployment catheter |
EP1275353A3 (en) * | 1999-05-26 | 2004-02-04 | Nec Tokin Corporation | Anastomosis member for anastomosis of blood vessels and anastomosis method using the anastomosis member |
US20040024446A1 (en) * | 1999-07-02 | 2004-02-05 | Scimed Life Systems, Inc. | Helically formed stent/graft assembly |
US6733523B2 (en) | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US20040093076A1 (en) * | 2002-08-06 | 2004-05-13 | Jason White | Helical stent with micro-latches |
US20040122504A1 (en) * | 2002-12-24 | 2004-06-24 | Michael Hogendijk | Vascular prosthesis and methods of use |
US20040158314A1 (en) * | 2002-12-24 | 2004-08-12 | Novostent Corporation | Ribbon-type vascular prosthesis having stress-relieving articulation and methods of use |
US20040160685A1 (en) * | 2003-01-27 | 2004-08-19 | Everardo Daniel Faires Quiros | Lower rear view mirror (LRVM for short) |
US6792979B2 (en) | 1999-02-01 | 2004-09-21 | Board Of Regents, The University Of Texas System | Methods for creating woven devices |
US6805704B1 (en) | 2000-06-26 | 2004-10-19 | C. R. Bard, Inc. | Intraluminal stents |
US20040236402A1 (en) * | 1999-02-02 | 2004-11-25 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents |
US20050021128A1 (en) * | 2003-07-24 | 2005-01-27 | Medtronic Vascular, Inc. | Compliant, porous, rolled stent |
US20050033410A1 (en) * | 2002-12-24 | 2005-02-10 | Novostent Corporation | Vascular prothesis having flexible configuration |
US6899730B1 (en) | 1999-04-15 | 2005-05-31 | Scimed Life Systems, Inc. | Catheter-stent device |
US20050137689A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delware Corporation | Retrievable heart valve anchor and method |
US20050165469A1 (en) * | 2002-12-24 | 2005-07-28 | Michael Hogendijk | Vascular prosthesis including torsional stabilizer and methods of use |
US20050192617A1 (en) * | 1996-06-21 | 2005-09-01 | Horton Joseph A. | Insitu formable and self-forming intravascular flow modifier (IFM), catheter and IFM assembly, and method for deployment of same |
US6942690B1 (en) | 2000-04-11 | 2005-09-13 | Endovascular Technologies, Inc. | Single-piece endoprosthesis with high expansion ratios and atraumatic ends |
US20050246010A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use |
US20050246008A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery system for vascular prostheses and methods of use |
US6974473B2 (en) | 2000-06-30 | 2005-12-13 | Vascular Architects, Inc. | Function-enhanced thrombolytic AV fistula and method |
US20060052861A1 (en) * | 2002-12-24 | 2006-03-09 | Novostent Corporation | Vascular prothesis having interdigitating edges and methods of use |
US20060058870A1 (en) * | 2004-09-14 | 2006-03-16 | Vascular Architects, Inc., A Delaware Corporation | Covered stent with controlled therapeutic agent diffusion |
US20060074478A1 (en) * | 2004-09-28 | 2006-04-06 | Feller Frederick Iii | Thin film medical device and delivery system |
US20060079955A1 (en) * | 2004-10-07 | 2006-04-13 | Scimed Life Systems, Inc. | Non-shortening helical stent |
WO2006039818A1 (en) * | 2004-10-15 | 2006-04-20 | The University Of British Columbia | Orthopaedic helical coil fastener and apparatus and method for implantation thereof |
US20060122684A1 (en) * | 2002-07-11 | 2006-06-08 | Whye-Kei Lye | Expandable body having deployable microstructures and related methods |
US20060136049A1 (en) * | 2004-12-20 | 2006-06-22 | Rojo Nicholas A | Implantable systems and stents containing cells for therapeutic uses |
US20060136034A1 (en) * | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. | Delivery catheter and method |
US20060136033A1 (en) * | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. | Coiled stent delivery system and method |
US20060136035A1 (en) * | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. A Delaware Corporation | Coiled endoluminal prosthesis system and delivery catheter |
WO2006068856A2 (en) * | 2004-12-20 | 2006-06-29 | Vascular Architects, Inc. | Coiled endoluminal prosthesis system, delivery catheter and method |
US20070005126A1 (en) * | 2005-06-30 | 2007-01-04 | Boston Scientific Scimed, Inc. | Hybrid stent |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US20070093888A1 (en) * | 2005-10-25 | 2007-04-26 | Scimed Life Systems, Inc. | Medical implants with limited resistance to migration |
US20070129637A1 (en) * | 2005-01-12 | 2007-06-07 | Remon Medical Technologies Ltd. | Devices For Fixing A Sensor In A Lumen |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20080077054A1 (en) * | 2006-08-28 | 2008-03-27 | Femsuite, Llc | Cervical dilator and methods of use |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US20080221663A1 (en) * | 2007-03-09 | 2008-09-11 | Novostent Corporation | Vascular prosthesis and methods of use |
US20080221658A1 (en) * | 2007-03-09 | 2008-09-11 | Novostent Corporation | Vascular prosthesis and methods of use |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20080294267A1 (en) * | 2007-05-25 | 2008-11-27 | C.R. Bard, Inc. | Twisted stent |
US20090082857A1 (en) * | 2004-05-05 | 2009-03-26 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US20090112237A1 (en) * | 2007-10-26 | 2009-04-30 | Cook Critical Care Incorporated | Vascular conduit and delivery system for open surgical placement |
US7560006B2 (en) | 2001-06-11 | 2009-07-14 | Boston Scientific Scimed, Inc. | Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses |
US7591848B2 (en) | 2006-04-06 | 2009-09-22 | Medtronic Vascular, Inc. | Riveted stent valve for percutaneous use |
US20090270742A1 (en) * | 2004-01-13 | 2009-10-29 | Remon Medical Technologies Ltd. | Devices for fixing a sensor in a lumen |
US7625403B2 (en) | 2006-04-04 | 2009-12-01 | Medtronic Vascular, Inc. | Valved conduit designed for subsequent catheter delivered valve therapy |
US20100010619A1 (en) * | 2008-07-08 | 2010-01-14 | Boston Scientific Scimed, Inc. | Closed-Cell Flexible Stent Hybrid |
US7682390B2 (en) | 2001-07-31 | 2010-03-23 | Medtronic, Inc. | Assembly for setting a valve prosthesis in a corporeal duct |
US7712606B2 (en) | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
US20100122698A1 (en) * | 2008-11-19 | 2010-05-20 | The Nemours Foundation | Neonatal airway stent |
US7740655B2 (en) | 2006-04-06 | 2010-06-22 | Medtronic Vascular, Inc. | Reinforced surgical conduit for implantation of a stented valve therein |
US7748389B2 (en) | 2003-12-23 | 2010-07-06 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US7758606B2 (en) | 2000-06-30 | 2010-07-20 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US7771463B2 (en) * | 2003-03-26 | 2010-08-10 | Ton Dai T | Twist-down implant delivery technologies |
US7780726B2 (en) | 2001-07-04 | 2010-08-24 | Medtronic, Inc. | Assembly for placing a prosthetic valve in a duct in the body |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US7785361B2 (en) | 2003-03-26 | 2010-08-31 | Julian Nikolchev | Implant delivery technologies |
US7824442B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7824443B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Medical implant delivery and deployment tool |
US7862602B2 (en) | 2005-11-02 | 2011-01-04 | Biosensors International Group, Ltd | Indirect-release electrolytic implant delivery systems |
US7871436B2 (en) | 2007-02-16 | 2011-01-18 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US7892281B2 (en) | 1999-11-17 | 2011-02-22 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US20110082464A1 (en) * | 2009-10-05 | 2011-04-07 | Arsenal Medical, Inc. | Polymeric Implant Delivery System |
US7935144B2 (en) * | 2006-10-19 | 2011-05-03 | Direct Flow Medical, Inc. | Profile reduction of valve implant |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7959664B2 (en) * | 1996-12-26 | 2011-06-14 | Medinol, Ltd. | Flat process of drug coating for stents |
US7959672B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical | Replacement valve and anchor |
US7972378B2 (en) | 2008-01-24 | 2011-07-05 | Medtronic, Inc. | Stents for prosthetic heart valves |
WO2011091362A1 (en) * | 2010-01-25 | 2011-07-28 | Jones Donald K | Methods and systems for performing vascular reconstruction |
US7988724B2 (en) | 2003-12-23 | 2011-08-02 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8016869B2 (en) | 2003-03-26 | 2011-09-13 | Biosensors International Group, Ltd. | Guidewire-less stent delivery methods |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US8052749B2 (en) | 2003-12-23 | 2011-11-08 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US8052750B2 (en) | 2006-09-19 | 2011-11-08 | Medtronic Ventor Technologies Ltd | Valve prosthesis fixation techniques using sandwiching |
US8060214B2 (en) | 2006-01-05 | 2011-11-15 | Cardiac Pacemakers, Inc. | Implantable medical device with inductive coil configurable for mechanical fixation |
US8057399B2 (en) | 2006-09-15 | 2011-11-15 | Cardiac Pacemakers, Inc. | Anchor for an implantable sensor |
US8070801B2 (en) | 2001-06-29 | 2011-12-06 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8075615B2 (en) | 2006-03-28 | 2011-12-13 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US8109996B2 (en) | 2004-03-03 | 2012-02-07 | Sorin Biomedica Cardio, S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US8118856B2 (en) | 2009-07-27 | 2012-02-21 | Endologix, Inc. | Stent graft |
US8137396B2 (en) | 2009-05-20 | 2012-03-20 | 480 Biomedical, Inc | Medical implant |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
US8157852B2 (en) * | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8167925B2 (en) | 1999-03-11 | 2012-05-01 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US8204599B2 (en) | 2007-05-02 | 2012-06-19 | Cardiac Pacemakers, Inc. | System for anchoring an implantable sensor in a vessel |
US8216295B2 (en) | 2008-07-01 | 2012-07-10 | Endologix, Inc. | Catheter system and methods of using same |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US8246678B2 (en) | 2003-12-23 | 2012-08-21 | Sadra Medicl, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US8328868B2 (en) | 2004-11-05 | 2012-12-11 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US8329021B2 (en) | 2010-10-28 | 2012-12-11 | Palmaz Scientific, Inc. | Method for mass transfer of micro-patterns onto medical devices |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US8419788B2 (en) | 2006-10-22 | 2013-04-16 | Idev Technologies, Inc. | Secured strand end devices |
US8430927B2 (en) | 2008-04-08 | 2013-04-30 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US8491646B2 (en) | 2009-07-15 | 2013-07-23 | Endologix, Inc. | Stent graft |
US8506620B2 (en) | 2005-09-26 | 2013-08-13 | Medtronic, Inc. | Prosthetic cardiac and venous valves |
US8512397B2 (en) | 2009-04-27 | 2013-08-20 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
US8540768B2 (en) | 2005-02-10 | 2013-09-24 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US8540765B2 (en) | 2009-05-20 | 2013-09-24 | 480 Biomedical, Inc. | Medical implant |
US8556881B2 (en) | 2006-10-19 | 2013-10-15 | Direct Flow Medical, Inc. | Catheter guidance through a calcified aortic valve |
US8562672B2 (en) | 2004-11-19 | 2013-10-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US8591570B2 (en) | 2004-09-07 | 2013-11-26 | Medtronic, Inc. | Prosthetic heart valve for replacing previously implanted heart valve |
US20130317600A1 (en) * | 2009-05-20 | 2013-11-28 | Maria Palasis | Drug eluting medical implant |
US8613765B2 (en) | 2008-02-28 | 2013-12-24 | Medtronic, Inc. | Prosthetic heart valve systems |
US8617441B2 (en) | 1995-03-10 | 2013-12-31 | Bard Peripheral Vascular, Inc. | Methods for making an encapsulated stent |
US8623077B2 (en) | 2001-06-29 | 2014-01-07 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8628566B2 (en) | 2008-01-24 | 2014-01-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US20140052162A1 (en) * | 2011-01-25 | 2014-02-20 | Acandis Gmbh & Co. Kg | Medical device having a lattice structure and treatment system having such a lattice structure |
US8657870B2 (en) | 2009-06-26 | 2014-02-25 | Biosensors International Group, Ltd. | Implant delivery apparatus and methods with electrolytic release |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US8685084B2 (en) | 2011-12-29 | 2014-04-01 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit and assembly method |
US8694129B2 (en) | 2009-02-13 | 2014-04-08 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US8696743B2 (en) | 2008-04-23 | 2014-04-15 | Medtronic, Inc. | Tissue attachment devices and methods for prosthetic heart valves |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
US8728155B2 (en) | 2011-03-21 | 2014-05-20 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus and method for the treatment of valve dysfunction |
US8747458B2 (en) | 2007-08-20 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
US8771302B2 (en) | 2001-06-29 | 2014-07-08 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8784478B2 (en) | 2006-10-16 | 2014-07-22 | Medtronic Corevalve, Inc. | Transapical delivery system with ventruculo-arterial overlfow bypass |
US8808350B2 (en) | 2011-03-01 | 2014-08-19 | Endologix, Inc. | Catheter system and methods of using same |
US8808369B2 (en) | 2009-10-05 | 2014-08-19 | Mayo Foundation For Medical Education And Research | Minimally invasive aortic valve replacement |
US8828077B2 (en) | 2006-03-15 | 2014-09-09 | Medinol Ltd. | Flat process of preparing drug eluting stents |
US8834563B2 (en) | 2008-12-23 | 2014-09-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US8834564B2 (en) | 2006-09-19 | 2014-09-16 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US8840661B2 (en) | 2008-05-16 | 2014-09-23 | Sorin Group Italia S.R.L. | Atraumatic prosthetic heart valve prosthesis |
US8858619B2 (en) | 2002-04-23 | 2014-10-14 | Medtronic, Inc. | System and method for implanting a replacement valve |
US8870948B1 (en) | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US8876881B2 (en) | 2006-10-22 | 2014-11-04 | Idev Technologies, Inc. | Devices for stent advancement |
US8934987B2 (en) | 2008-07-15 | 2015-01-13 | Cardiac Pacemakers, Inc. | Implant assist apparatus for acoustically enabled implantable medical device |
US8940014B2 (en) | 2011-11-15 | 2015-01-27 | Boston Scientific Scimed, Inc. | Bond between components of a medical device |
US8945202B2 (en) | 2009-04-28 | 2015-02-03 | Endologix, Inc. | Fenestrated prosthesis |
US8951280B2 (en) | 2000-11-09 | 2015-02-10 | Medtronic, Inc. | Cardiac valve procedure methods and devices |
US8951243B2 (en) | 2011-12-03 | 2015-02-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US20150051708A1 (en) * | 2011-03-17 | 2015-02-19 | Microkoll Inc. | Apparatus and method for tissue adhesion |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US8998976B2 (en) | 2011-07-12 | 2015-04-07 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
US8998981B2 (en) | 2008-09-15 | 2015-04-07 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US9011521B2 (en) | 2003-12-23 | 2015-04-21 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9023094B2 (en) | 2007-06-25 | 2015-05-05 | Microvention, Inc. | Self-expanding prosthesis |
US9078781B2 (en) | 2006-01-11 | 2015-07-14 | Medtronic, Inc. | Sterile cover for compressible stents used in percutaneous device delivery systems |
US9089422B2 (en) | 2008-01-24 | 2015-07-28 | Medtronic, Inc. | Markers for prosthetic heart valves |
US9131926B2 (en) | 2011-11-10 | 2015-09-15 | Boston Scientific Scimed, Inc. | Direct connect flush system |
US9149358B2 (en) * | 2008-01-24 | 2015-10-06 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
US9161836B2 (en) | 2011-02-14 | 2015-10-20 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9192463B2 (en) | 2010-08-03 | 2015-11-24 | Cook Medical Technologies, LLC | Blood perfusion device |
US20150351888A1 (en) * | 2014-06-04 | 2015-12-10 | Boston Scientific Scimed, Inc. | Devices and methods for delivery of implants |
US9226826B2 (en) | 2010-02-24 | 2016-01-05 | Medtronic, Inc. | Transcatheter valve structure and methods for valve delivery |
US9237886B2 (en) | 2007-04-20 | 2016-01-19 | Medtronic, Inc. | Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof |
US9248017B2 (en) | 2010-05-21 | 2016-02-02 | Sorin Group Italia S.R.L. | Support device for valve prostheses and corresponding kit |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US9289289B2 (en) | 2011-02-14 | 2016-03-22 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
US9393115B2 (en) | 2008-01-24 | 2016-07-19 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US9415225B2 (en) | 2005-04-25 | 2016-08-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US9439757B2 (en) | 2014-12-09 | 2016-09-13 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US9510945B2 (en) | 2011-12-20 | 2016-12-06 | Boston Scientific Scimed Inc. | Medical device handle |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US9539088B2 (en) | 2001-09-07 | 2017-01-10 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US9579194B2 (en) | 2003-10-06 | 2017-02-28 | Medtronic ATS Medical, Inc. | Anchoring structure with concave landing zone |
US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US9622753B2 (en) | 2001-07-20 | 2017-04-18 | Microvention, Inc. | Aneurysm treatment device and method of use |
US9629718B2 (en) | 2013-05-03 | 2017-04-25 | Medtronic, Inc. | Valve delivery tool |
US9731141B2 (en) | 2007-06-14 | 2017-08-15 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
US9757574B2 (en) | 2015-05-11 | 2017-09-12 | Rainbow Medical Ltd. | Dual chamber transvenous pacemaker |
US9775704B2 (en) | 2004-04-23 | 2017-10-03 | Medtronic3F Therapeutics, Inc. | Implantable valve prosthesis |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US20170325938A1 (en) | 2016-05-16 | 2017-11-16 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US9901445B2 (en) | 2014-11-21 | 2018-02-27 | Boston Scientific Scimed, Inc. | Valve locking mechanism |
US9918833B2 (en) | 2010-09-01 | 2018-03-20 | Medtronic Vascular Galway | Prosthetic valve support structure |
DE102016118600A1 (en) * | 2016-09-30 | 2018-04-05 | Acandis Gmbh & Co. Kg | Medical device, band-shaped lattice structure, set and method of making the same |
US9943426B2 (en) | 2015-07-15 | 2018-04-17 | Elixir Medical Corporation | Uncaging stent |
US10034739B2 (en) | 2012-06-18 | 2018-07-31 | Board Of Regents Of The University Of Nebraska | Stent to assist in arteriovenous fistula formation |
US10080652B2 (en) | 2015-03-13 | 2018-09-25 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
US10130463B2 (en) | 2007-08-23 | 2018-11-20 | Dfm, Llc | Translumenally implantable heart valve with formed in place support |
US10136991B2 (en) | 2015-08-12 | 2018-11-27 | Boston Scientific Scimed Inc. | Replacement heart valve implant |
US10143552B2 (en) | 2015-05-14 | 2018-12-04 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
US10179041B2 (en) | 2015-08-12 | 2019-01-15 | Boston Scientific Scimed Icn. | Pinless release mechanism |
US10195392B2 (en) | 2015-07-02 | 2019-02-05 | Boston Scientific Scimed, Inc. | Clip-on catheter |
US10201417B2 (en) | 2015-02-03 | 2019-02-12 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US10201418B2 (en) | 2010-09-10 | 2019-02-12 | Symetis, SA | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
CN109464229A (en) * | 2018-12-29 | 2019-03-15 | 韩新巍 | A kind of biliary tract spiral particle bracket and stent delivery catheter are set with |
US10245166B2 (en) | 2008-02-22 | 2019-04-02 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US10245136B2 (en) | 2016-05-13 | 2019-04-02 | Boston Scientific Scimed Inc. | Containment vessel with implant sheathing guide |
US10258465B2 (en) | 2003-12-23 | 2019-04-16 | Boston Scientific Scimed Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US10271970B2 (en) | 2010-08-03 | 2019-04-30 | Cook Medical Technologies Llc | Blood perfusion device |
US10278805B2 (en) | 2000-08-18 | 2019-05-07 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
US10285809B2 (en) | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
US10299922B2 (en) | 2005-12-22 | 2019-05-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US10335277B2 (en) | 2015-07-02 | 2019-07-02 | Boston Scientific Scimed Inc. | Adjustable nosecone |
US10342660B2 (en) | 2016-02-02 | 2019-07-09 | Boston Scientific Inc. | Tensioned sheathing aids |
US10368990B2 (en) | 2017-01-23 | 2019-08-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10426617B2 (en) | 2015-03-06 | 2019-10-01 | Boston Scientific Scimed, Inc. | Low profile valve locking mechanism and commissure assembly |
US10433847B2 (en) | 2013-12-17 | 2019-10-08 | The Board Of Regents Of The University Of Nebraska | Platform device and method of use to assist in anastomosis formation |
US10449043B2 (en) | 2015-01-16 | 2019-10-22 | Boston Scientific Scimed, Inc. | Displacement based lock and release mechanism |
WO2019213232A1 (en) * | 2018-05-01 | 2019-11-07 | Conceivex, Inc. | Conception device and related methods |
US10470881B2 (en) | 2015-05-14 | 2019-11-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10478299B2 (en) | 2010-05-19 | 2019-11-19 | Dfm, Llc | Low crossing profile delivery catheter for cardiovascular prosthetic implant |
US10485976B2 (en) | 1998-04-30 | 2019-11-26 | Medtronic, Inc. | Intracardiovascular access (ICVA™) system |
US10524945B2 (en) * | 2013-10-04 | 2020-01-07 | Covidien Lp | Stents twisted prior to deployment and untwisted during deployment |
US10555809B2 (en) | 2012-06-19 | 2020-02-11 | Boston Scientific Scimed, Inc. | Replacement heart valve |
US10568994B2 (en) | 2009-05-20 | 2020-02-25 | 480 Biomedical Inc. | Drug-eluting medical implants |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US10779940B2 (en) | 2015-09-03 | 2020-09-22 | Boston Scientific Scimed, Inc. | Medical device handle |
US10828154B2 (en) | 2017-06-08 | 2020-11-10 | Boston Scientific Scimed, Inc. | Heart valve implant commissure support structure |
US10849746B2 (en) | 2015-05-14 | 2020-12-01 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10856970B2 (en) | 2007-10-10 | 2020-12-08 | Medtronic Ventor Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US10898325B2 (en) | 2017-08-01 | 2021-01-26 | Boston Scientific Scimed, Inc. | Medical implant locking mechanism |
US10918505B2 (en) | 2016-05-16 | 2021-02-16 | Elixir Medical Corporation | Uncaging stent |
US10939996B2 (en) | 2017-08-16 | 2021-03-09 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11040178B2 (en) | 2014-11-03 | 2021-06-22 | Cagent Vascular, Llc | Serration balloon |
CN113116455A (en) * | 2019-12-31 | 2021-07-16 | 辽宁垠艺生物科技股份有限公司 | High-support high-compliance net pipe structure |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11123527B2 (en) | 2015-09-17 | 2021-09-21 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11129737B2 (en) | 2015-06-30 | 2021-09-28 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
US11141573B2 (en) | 2008-03-21 | 2021-10-12 | Cagent Vascular, Inc. | Method for plaque serration |
US11147668B2 (en) | 2018-02-07 | 2021-10-19 | Boston Scientific Scimed, Inc. | Medical device delivery system with alignment feature |
US11166742B2 (en) | 2008-03-21 | 2021-11-09 | Cagent Vascular, Inc. | Method of enhancing drug uptake from a drug-eluting balloon |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US11191641B2 (en) | 2018-01-19 | 2021-12-07 | Boston Scientific Scimed, Inc. | Inductance mode deployment sensors for transcatheter valve system |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11219750B2 (en) | 2008-03-21 | 2022-01-11 | Cagent Vascular, Inc. | System and method for plaque serration |
US11229517B2 (en) | 2018-05-15 | 2022-01-25 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
US11241312B2 (en) | 2018-12-10 | 2022-02-08 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
US11241310B2 (en) | 2018-06-13 | 2022-02-08 | Boston Scientific Scimed, Inc. | Replacement heart valve delivery device |
US11246625B2 (en) | 2018-01-19 | 2022-02-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
US11278398B2 (en) | 2003-12-23 | 2022-03-22 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US11285002B2 (en) | 2003-12-23 | 2022-03-29 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US11304801B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US11331187B2 (en) | 2016-06-17 | 2022-05-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US11369779B2 (en) | 2018-07-25 | 2022-06-28 | Cagent Vascular, Inc. | Medical balloon catheters with enhanced pushability |
US11406518B2 (en) | 2010-11-02 | 2022-08-09 | Endologix Llc | Apparatus and method of placement of a graft or graft system |
US11419717B2 (en) | 2017-06-29 | 2022-08-23 | Open Stent Solution Sas | Intraluminal support structure and prosthetic valve for the same |
US11439504B2 (en) | 2019-05-10 | 2022-09-13 | Boston Scientific Scimed, Inc. | Replacement heart valve with improved cusp washout and reduced loading |
US11439732B2 (en) | 2018-02-26 | 2022-09-13 | Boston Scientific Scimed, Inc. | Embedded radiopaque marker in adaptive seal |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US20230090160A1 (en) * | 2016-05-12 | 2023-03-23 | St. Jude Medical, Cardiology Division, Inc. | Mitral Heart Valve Replacement |
US11738181B2 (en) | 2014-06-04 | 2023-08-29 | Cagent Vascular, Inc. | Cage for medical balloon |
US11771544B2 (en) | 2011-05-05 | 2023-10-03 | Symetis Sa | Method and apparatus for compressing/loading stent-valves |
US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US12171658B2 (en) | 2022-11-09 | 2024-12-24 | Jenavalve Technology, Inc. | Catheter system for sequential deployment of an expandable implant |
US12232760B2 (en) | 2021-10-05 | 2025-02-25 | Cagent Vascular, Inc. | Intravascular device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6042597A (en) | 1998-10-23 | 2000-03-28 | Scimed Life Systems, Inc. | Helical stent design |
US20040260386A1 (en) * | 2003-01-31 | 2004-12-23 | Shalaby Shalaby W. | Absorbable / biodegradable tubular stent and methods of making the same |
IL169696A (en) * | 2004-07-22 | 2014-12-31 | Cordis Corp | Device for filtering blood in a vessel with helical elements |
DE102004044679A1 (en) | 2004-09-09 | 2006-03-16 | Biotronik Vi Patent Ag | Implant with low radial strength |
US20070160672A1 (en) | 2006-01-06 | 2007-07-12 | Vipul Bhupendra Dave | Methods of making bioabsorbable drug delivery devices comprised of solvent cast films |
US20070162110A1 (en) * | 2006-01-06 | 2007-07-12 | Vipul Bhupendra Dave | Bioabsorbable drug delivery devices |
JP2008245699A (en) * | 2007-03-29 | 2008-10-16 | Yamaguchi Univ | Drug sustained release stent |
JP5401613B2 (en) * | 2010-02-22 | 2014-01-29 | 上海交通大学医学院附属新華医院 | New slide fastener bioabsorbable stent transportation system |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4553545A (en) * | 1981-09-16 | 1985-11-19 | Medinvent S.A. | Device for application in blood vessels or other difficultly accessible locations and its use |
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4665918A (en) * | 1986-01-06 | 1987-05-19 | Garza Gilbert A | Prosthesis system and method |
US4739762A (en) * | 1985-11-07 | 1988-04-26 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4886062A (en) * | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5019090A (en) * | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5147370A (en) * | 1991-06-12 | 1992-09-15 | Mcnamara Thomas O | Nitinol stent for hollow body conduits |
US5246445A (en) * | 1990-04-19 | 1993-09-21 | Instent Inc. | Device for the treatment of constricted ducts in human bodies |
US5314444A (en) * | 1987-03-13 | 1994-05-24 | Cook Incorporated | Endovascular stent and delivery system |
US5344426A (en) * | 1990-04-25 | 1994-09-06 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5421955A (en) * | 1991-10-28 | 1995-06-06 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5423885A (en) * | 1992-01-31 | 1995-06-13 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5441515A (en) * | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5443500A (en) * | 1989-01-26 | 1995-08-22 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US5476505A (en) * | 1993-11-18 | 1995-12-19 | Advanced Cardiovascular Systems, Inc. | Coiled stent and delivery system |
US5540713A (en) * | 1991-10-11 | 1996-07-30 | Angiomed Ag | Apparatus for widening a stenosis in a body cavity |
US5551954A (en) * | 1991-10-04 | 1996-09-03 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5556413A (en) * | 1994-03-11 | 1996-09-17 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
US5607478A (en) * | 1996-03-14 | 1997-03-04 | Meadox Medicals Inc. | Yarn wrapped PTFE tubular prosthesis |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE450809B (en) * | 1985-04-10 | 1987-08-03 | Medinvent Sa | PLANT TOPIC PROVIDED FOR MANUFACTURING A SPIRAL SPRING SUITABLE FOR TRANSLUMINAL IMPLANTATION AND MANUFACTURED SPIRAL SPRINGS |
-
1997
- 1997-03-18 US US08/820,212 patent/US5824053A/en not_active Expired - Lifetime
-
1998
- 1998-03-18 ES ES98913000T patent/ES2210734T3/en not_active Expired - Lifetime
- 1998-03-18 EP EP98913000A patent/EP1009326B1/en not_active Expired - Lifetime
- 1998-03-18 CA CA002283728A patent/CA2283728C/en not_active Expired - Fee Related
- 1998-03-18 WO PCT/US1998/005519 patent/WO1998041170A1/en active IP Right Grant
- 1998-03-18 DE DE69821245T patent/DE69821245T2/en not_active Expired - Fee Related
- 1998-03-18 AT AT98913000T patent/ATE258033T1/en not_active IP Right Cessation
- 1998-03-18 JP JP54083998A patent/JP4073499B2/en not_active Expired - Fee Related
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4553545A (en) * | 1981-09-16 | 1985-11-19 | Medinvent S.A. | Device for application in blood vessels or other difficultly accessible locations and its use |
US4655771B1 (en) * | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4739762A (en) * | 1985-11-07 | 1988-04-26 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4739762B1 (en) * | 1985-11-07 | 1998-10-27 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4665918A (en) * | 1986-01-06 | 1987-05-19 | Garza Gilbert A | Prosthesis system and method |
US5314444A (en) * | 1987-03-13 | 1994-05-24 | Cook Incorporated | Endovascular stent and delivery system |
US4886062A (en) * | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5019090A (en) * | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5443500A (en) * | 1989-01-26 | 1995-08-22 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US5246445A (en) * | 1990-04-19 | 1993-09-21 | Instent Inc. | Device for the treatment of constricted ducts in human bodies |
US5344426A (en) * | 1990-04-25 | 1994-09-06 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5147370A (en) * | 1991-06-12 | 1992-09-15 | Mcnamara Thomas O | Nitinol stent for hollow body conduits |
US5551954A (en) * | 1991-10-04 | 1996-09-03 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5540713A (en) * | 1991-10-11 | 1996-07-30 | Angiomed Ag | Apparatus for widening a stenosis in a body cavity |
US5421955B1 (en) * | 1991-10-28 | 1998-01-20 | Advanced Cardiovascular System | Expandable stents and method for making same |
US5421955A (en) * | 1991-10-28 | 1995-06-06 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5423885A (en) * | 1992-01-31 | 1995-06-13 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5441515A (en) * | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5476505A (en) * | 1993-11-18 | 1995-12-19 | Advanced Cardiovascular Systems, Inc. | Coiled stent and delivery system |
US5556413A (en) * | 1994-03-11 | 1996-09-17 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
US5607478A (en) * | 1996-03-14 | 1997-03-04 | Meadox Medicals Inc. | Yarn wrapped PTFE tubular prosthesis |
Cited By (650)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432131B1 (en) * | 1995-01-31 | 2002-08-13 | Boston Scientific Corporation | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US6773453B2 (en) | 1995-01-31 | 2004-08-10 | Scimed Life Systems, Inc. | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US8337650B2 (en) | 1995-03-10 | 2012-12-25 | Bard Peripheral Vascular, Inc. | Methods for making a supported graft |
US6790226B2 (en) * | 1995-03-10 | 2004-09-14 | Bard Peripheral Vascular, Inc. | Endoluminal prosthesis with support wire |
US20010021870A1 (en) * | 1995-03-10 | 2001-09-13 | Edwin Tarun J. | Externally supported graft |
US8617441B2 (en) | 1995-03-10 | 2013-12-31 | Bard Peripheral Vascular, Inc. | Methods for making an encapsulated stent |
US8647458B2 (en) | 1995-03-10 | 2014-02-11 | Bard Peripheral Vascular, Inc. | Methods for making a supported graft |
US20050192617A1 (en) * | 1996-06-21 | 2005-09-01 | Horton Joseph A. | Insitu formable and self-forming intravascular flow modifier (IFM), catheter and IFM assembly, and method for deployment of same |
US7959664B2 (en) * | 1996-12-26 | 2011-06-14 | Medinol, Ltd. | Flat process of drug coating for stents |
US6210422B1 (en) | 1997-02-20 | 2001-04-03 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US20050004654A1 (en) * | 1997-03-18 | 2005-01-06 | Farhad Khosravi | Coiled sheet graft for single and bifurcated lumens and methods of making and use |
US6425915B1 (en) * | 1997-03-18 | 2002-07-30 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US6048360A (en) * | 1997-03-18 | 2000-04-11 | Endotex Interventional Systems, Inc. | Methods of making and using coiled sheet graft for single and bifurcated lumens |
US6458152B1 (en) | 1997-03-18 | 2002-10-01 | Endotex Interventional Systems, Inc. | Coiled sheet graft for single and bifurcated lumens and methods of making and use |
US8092513B2 (en) | 1997-03-18 | 2012-01-10 | Boston Scientific Scimed, Inc. | Coiled sheet graft for single and bifurcated lumens and methods of making and use |
US7011674B2 (en) * | 1997-05-02 | 2006-03-14 | Micro Therapeutics, Inc. | Expandable stent apparatus and method |
US20020151954A1 (en) * | 1997-05-02 | 2002-10-17 | Micro Therapeutics, Inc. | Expandable stent apparatus and method |
US5984957A (en) * | 1997-08-12 | 1999-11-16 | Schneider (Usa) Inc | Radially expanded prostheses with axial diameter control |
US6156062A (en) * | 1997-12-03 | 2000-12-05 | Ave Connaught | Helically wrapped interlocking stent |
US7655032B2 (en) * | 1998-03-04 | 2010-02-02 | Boston Scientific Scimed, Inc. | Stent cell configurations |
US20100131047A1 (en) * | 1998-03-04 | 2010-05-27 | Boston Scientific Scimed, Inc. | Stent Cell Configurations |
US6331190B1 (en) | 1998-03-04 | 2001-12-18 | Endologix, Inc. | Endoluminal vascular prosthesis |
US20020143391A1 (en) * | 1998-03-04 | 2002-10-03 | Scimed Life Systems, Inc. | Stent cell configurations |
US6793672B2 (en) | 1998-03-25 | 2004-09-21 | Endotex Interventional Systems, Inc. | Coiled sheet graft for single and bifurcated lumens and methods of making and use |
US10485976B2 (en) | 1998-04-30 | 2019-11-26 | Medtronic, Inc. | Intracardiovascular access (ICVA™) system |
US6406490B1 (en) * | 1998-05-29 | 2002-06-18 | Micro Therapeutics, Inc. | Rolled stent with waveform perforation pattern |
US6015433A (en) * | 1998-05-29 | 2000-01-18 | Micro Therapeutics, Inc. | Rolled stent with waveform perforation pattern |
US6916337B2 (en) | 1998-05-29 | 2005-07-12 | Micro Therapeutics, Inc. | Rolled stent with waveform perforation pattern |
US20050251247A1 (en) * | 1998-05-29 | 2005-11-10 | Micro Therapeutics, Inc. | Rolled stent with waveform perforation pattern |
US6165194A (en) | 1998-07-24 | 2000-12-26 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6416541B2 (en) | 1998-07-24 | 2002-07-09 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6656218B1 (en) | 1998-07-24 | 2003-12-02 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
WO2000004845A2 (en) * | 1998-07-24 | 2000-02-03 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6214042B1 (en) * | 1998-11-10 | 2001-04-10 | Precision Vascular Systems, Inc. | Micro-machined stent for vessels, body ducts and the like |
WO2000027303A3 (en) * | 1998-11-10 | 2000-07-27 | Precision Vascular Systems Inc | Micro-machined stent for vessels, body ducts and the like |
WO2000027303A2 (en) * | 1998-11-10 | 2000-05-18 | Precision Vascular Systems, Inc. | Micro-machined stent for vessels, body ducts and the like |
WO2000032138A1 (en) * | 1998-12-03 | 2000-06-08 | Medinol Ltd. | Serpentine coiled ladder stent |
JP2007167679A (en) * | 1998-12-03 | 2007-07-05 | Medinol Ltd | Stent and strip |
US6355059B1 (en) * | 1998-12-03 | 2002-03-12 | Medinol, Ltd. | Serpentine coiled ladder stent |
US6503270B1 (en) | 1998-12-03 | 2003-01-07 | Medinol Ltd. | Serpentine coiled ladder stent |
US6500202B1 (en) | 1998-12-11 | 2002-12-31 | Endologix, Inc. | Bifurcation graft deployment catheter |
US8147535B2 (en) | 1998-12-11 | 2012-04-03 | Endologix, Inc. | Bifurcation graft deployment catheter |
US6733523B2 (en) | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US6660030B2 (en) | 1998-12-11 | 2003-12-09 | Endologix, Inc. | Bifurcation graft deployment catheter |
US6508835B1 (en) | 1998-12-11 | 2003-01-21 | Endologix, Inc. | Endoluminal vascular prosthesis |
US8974516B2 (en) | 1999-02-01 | 2015-03-10 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8876880B2 (en) | 1999-02-01 | 2014-11-04 | Board Of Regents, The University Of Texas System | Plain woven stents |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
US7048014B2 (en) | 1999-02-01 | 2006-05-23 | Board Of Regents, The University Of Texas System | Methods for creating woven devices |
US8414635B2 (en) | 1999-02-01 | 2013-04-09 | Idev Technologies, Inc. | Plain woven stents |
US6792979B2 (en) | 1999-02-01 | 2004-09-21 | Board Of Regents, The University Of Texas System | Methods for creating woven devices |
US9925074B2 (en) | 1999-02-01 | 2018-03-27 | Board Of Regents, The University Of Texas System | Plain woven stents |
US6409750B1 (en) | 1999-02-01 | 2002-06-25 | Board Of Regents, The University Of Texas System | Woven bifurcated and trifurcated stents and methods for making the same |
US20040236402A1 (en) * | 1999-02-02 | 2004-11-25 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents |
US7914639B2 (en) | 1999-02-02 | 2011-03-29 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents |
US10213328B2 (en) | 1999-02-02 | 2019-02-26 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents |
US8617337B2 (en) | 1999-02-02 | 2013-12-31 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents |
US20090294035A1 (en) * | 1999-02-02 | 2009-12-03 | C. R. Bard, Inc. | Partial encapsulation of stents |
US20040153142A1 (en) * | 1999-02-26 | 2004-08-05 | Vascular Architects, Inc., A Delaware Corporation | Expandable coil endoluminal prosthesis |
US6488700B2 (en) | 1999-02-26 | 2002-12-03 | Vascular Architects, Inc. | Endoluminal prosthesis placing method |
US6660032B2 (en) | 1999-02-26 | 2003-12-09 | Vascular Architects, Inc. | Expandable coil endoluminal prosthesis |
US6238430B1 (en) | 1999-02-26 | 2001-05-29 | Vascular Architects, Inc. | Catheter assembly with controlled release endoluminal prosthesis and method for placing |
US6645237B2 (en) | 1999-02-26 | 2003-11-11 | Vascular Architects, Inc. | Expandable coiled endoluminal prosthesis |
US6248122B1 (en) | 1999-02-26 | 2001-06-19 | Vascular Architects, Inc. | Catheter with controlled release endoluminal prosthesis |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US8167925B2 (en) | 1999-03-11 | 2012-05-01 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
AU772969B2 (en) * | 1999-04-15 | 2004-05-13 | Smart Therapeutics, Inc. | Intravascular stent and method of treating neurovascualr vessel lesion |
AU2004203046B2 (en) * | 1999-04-15 | 2005-11-10 | Smart Therapeutics, Inc. | Intravascular stent and method of treating neurovascular vessel lesion |
US6860899B1 (en) * | 1999-04-15 | 2005-03-01 | Boston Scientific Scimed, Inc. | Method for treating neurovascular aneurysms |
US6899730B1 (en) | 1999-04-15 | 2005-05-31 | Scimed Life Systems, Inc. | Catheter-stent device |
US7520893B2 (en) * | 1999-04-15 | 2009-04-21 | Scimed Life Systems, Inc. | Method for treating neurovascular aneurysms |
US20050149164A1 (en) * | 1999-04-15 | 2005-07-07 | Rivelli Patrick Jr. | Method for treating neurovascular aneurysms |
WO2000062711A1 (en) * | 1999-04-15 | 2000-10-26 | Smart Therapeutics, Inc. | Intravascular stent and method of treating neurovascualr vessel lesion |
US6746475B1 (en) * | 1999-04-15 | 2004-06-08 | Scimed Life Systems, Inc. | Stent with variable stiffness |
US20040220663A1 (en) * | 1999-04-15 | 2004-11-04 | Patrick Rivelli | Stent with variable stiffness |
EP1275353A3 (en) * | 1999-05-26 | 2004-02-04 | Nec Tokin Corporation | Anastomosis member for anastomosis of blood vessels and anastomosis method using the anastomosis member |
US20050273121A1 (en) * | 1999-05-26 | 2005-12-08 | Akira Sato | Anastomosis member for anastomosis of blood vessels and anastomosis method using the anastomosis member |
US20040024446A1 (en) * | 1999-07-02 | 2004-02-05 | Scimed Life Systems, Inc. | Helically formed stent/graft assembly |
US6712842B1 (en) | 1999-10-12 | 2004-03-30 | Allan Will | Methods and devices for lining a blood vessel and opening a narrowed region of a blood vessel |
US6383171B1 (en) | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US7892281B2 (en) | 1999-11-17 | 2011-02-22 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8986329B2 (en) | 1999-11-17 | 2015-03-24 | Medtronic Corevalve Llc | Methods for transluminal delivery of prosthetic valves |
US9060856B2 (en) | 1999-11-17 | 2015-06-23 | Medtronic Corevalve Llc | Transcatheter heart valves |
US8721708B2 (en) | 1999-11-17 | 2014-05-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US10219901B2 (en) | 1999-11-17 | 2019-03-05 | Medtronic CV Luxembourg S.a.r.l. | Prosthetic valve for transluminal delivery |
US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US9066799B2 (en) | 1999-11-17 | 2015-06-30 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8876896B2 (en) | 1999-11-17 | 2014-11-04 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8603159B2 (en) | 1999-11-17 | 2013-12-10 | Medtronic Corevalve, Llc | Prosthetic valve for transluminal delivery |
US8998979B2 (en) | 1999-11-17 | 2015-04-07 | Medtronic Corevalve Llc | Transcatheter heart valves |
US9962258B2 (en) | 1999-11-17 | 2018-05-08 | Medtronic CV Luxembourg S.a.r.l. | Transcatheter heart valves |
US8801779B2 (en) | 1999-11-17 | 2014-08-12 | Medtronic Corevalve, Llc | Prosthetic valve for transluminal delivery |
US9949831B2 (en) | 2000-01-19 | 2018-04-24 | Medtronics, Inc. | Image-guided heart valve placement |
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US6676701B2 (en) | 2000-02-01 | 2004-01-13 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US20040111142A1 (en) * | 2000-02-01 | 2004-06-10 | Rourke Jonathan M. | Micro-porous mesh stent with hybrid structure |
WO2001056502A1 (en) * | 2000-02-01 | 2001-08-09 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US7041129B2 (en) | 2000-02-01 | 2006-05-09 | Endotex Interventional Systems, Inc | Micro-porous mesh stent with hybrid structure |
EP1435221A1 (en) * | 2000-02-01 | 2004-07-07 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US6312463B1 (en) * | 2000-02-01 | 2001-11-06 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US20060173535A1 (en) * | 2000-02-01 | 2006-08-03 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US7695509B2 (en) | 2000-02-01 | 2010-04-13 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US7147662B1 (en) | 2000-04-11 | 2006-12-12 | Endovascular Technologies, Inc. | Hook for attaching to a corporeal lumen and method of manufacturing |
US6942690B1 (en) | 2000-04-11 | 2005-09-13 | Endovascular Technologies, Inc. | Single-piece endoprosthesis with high expansion ratios and atraumatic ends |
US20100222871A1 (en) * | 2000-04-11 | 2010-09-02 | Endovascular Technologies, Inc. | Mechanism for securing to a corporeal lumen and method of manufacturing |
US8382816B2 (en) | 2000-04-11 | 2013-02-26 | Abbott Vascular Solutions Inc. | Single-piece endoprosthesis with high expansion ratios and atraumatic ends |
US7736387B2 (en) | 2000-04-11 | 2010-06-15 | Endovascular Technologies, Inc. | Mechanism for securing to a corporeal lumen and method of manufacturing |
US6517573B1 (en) | 2000-04-11 | 2003-02-11 | Endovascular Technologies, Inc. | Hook for attaching to a corporeal lumen and method of manufacturing |
US20070255395A1 (en) * | 2000-04-11 | 2007-11-01 | Endovascular Technologies, Inc. | Mechanism for securing to a corporeal lumen and method of manufacturing |
US7998194B2 (en) | 2000-04-11 | 2011-08-16 | Endovascular Technologies, Inc. | Mechanism for securing to a corporeal lumen and method of manufacturing |
US20020017503A1 (en) * | 2000-05-19 | 2002-02-14 | Banas Christopher E. | Methods and apparatus for manufacturing an intravascular stent |
US10806614B2 (en) | 2000-05-19 | 2020-10-20 | Vactronix Scientific, Llc | Method of making recessed features on inner surface of tubular structure by thermal ablation |
US10758383B2 (en) | 2000-05-19 | 2020-09-01 | Vactronix Scientific, Llc | Method of making recessed features on inner surface of tubular structure by photolithography |
US9788980B2 (en) | 2000-05-19 | 2017-10-17 | Vactronix Scientific, Inc. | Method for making grooves on a luminal surface of an intravascular stent |
US8512579B2 (en) | 2000-05-19 | 2013-08-20 | Advanced Bio Prosthetic Surfaces, Ltd. | Method for making grooves on a luminal surface of an intravascular stent |
US8037733B2 (en) | 2000-05-19 | 2011-10-18 | Advanced Bio Prosthetic Surfaces, Ltd. | Methods and apparatus for manufacturing an intravascular stent |
US8920660B2 (en) | 2000-05-19 | 2014-12-30 | Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific Inc. | Method for making grooves on a luminal surface of an intravascular stent |
US20030069633A1 (en) * | 2000-06-06 | 2003-04-10 | Jacob Richter | Serpentine coiled ladder stent |
US6805704B1 (en) | 2000-06-26 | 2004-10-19 | C. R. Bard, Inc. | Intraluminal stents |
US7758606B2 (en) | 2000-06-30 | 2010-07-20 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US6921414B2 (en) | 2000-06-30 | 2005-07-26 | Vascular Architects, Inc. | Endoluminal prosthesis and tissue separation condition treatment method |
US20030225444A1 (en) * | 2000-06-30 | 2003-12-04 | Vascular Architects, Inc., A Delaware Corporation | Endoluminal prosthesis and tissue separation condition treatment method |
US6974473B2 (en) | 2000-06-30 | 2005-12-13 | Vascular Architects, Inc. | Function-enhanced thrombolytic AV fistula and method |
US8092487B2 (en) | 2000-06-30 | 2012-01-10 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US6585760B1 (en) | 2000-06-30 | 2003-07-01 | Vascular Architects, Inc | AV fistula and function enhancing method |
US8777980B2 (en) | 2000-06-30 | 2014-07-15 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US6572648B1 (en) | 2000-06-30 | 2003-06-03 | Vascular Architects, Inc. | Endoluminal prosthesis and tissue separation condition treatment method |
US10278805B2 (en) | 2000-08-18 | 2019-05-07 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
US8951280B2 (en) | 2000-11-09 | 2015-02-10 | Medtronic, Inc. | Cardiac valve procedure methods and devices |
US7560006B2 (en) | 2001-06-11 | 2009-07-14 | Boston Scientific Scimed, Inc. | Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses |
US8623077B2 (en) | 2001-06-29 | 2014-01-07 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8070801B2 (en) | 2001-06-29 | 2011-12-06 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8771302B2 (en) | 2001-06-29 | 2014-07-08 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8956402B2 (en) | 2001-06-29 | 2015-02-17 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8628570B2 (en) | 2001-07-04 | 2014-01-14 | Medtronic Corevalve Llc | Assembly for placing a prosthetic valve in a duct in the body |
US8002826B2 (en) | 2001-07-04 | 2011-08-23 | Medtronic Corevalve Llc | Assembly for placing a prosthetic valve in a duct in the body |
US7780726B2 (en) | 2001-07-04 | 2010-08-24 | Medtronic, Inc. | Assembly for placing a prosthetic valve in a duct in the body |
US9149357B2 (en) | 2001-07-04 | 2015-10-06 | Medtronic CV Luxembourg S.a.r.l. | Heart valve assemblies |
US9622753B2 (en) | 2001-07-20 | 2017-04-18 | Microvention, Inc. | Aneurysm treatment device and method of use |
US7682390B2 (en) | 2001-07-31 | 2010-03-23 | Medtronic, Inc. | Assembly for setting a valve prosthesis in a corporeal duct |
US10342657B2 (en) | 2001-09-07 | 2019-07-09 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US9539088B2 (en) | 2001-09-07 | 2017-01-10 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20060069421A1 (en) * | 2002-01-29 | 2006-03-30 | Medtronic Vascular, Inc. | Flared stent and method for use |
US20030144724A1 (en) * | 2002-01-29 | 2003-07-31 | Robert Murray | Flared stent and method of use |
US6964681B2 (en) | 2002-01-29 | 2005-11-15 | Medtronic Vascular, Inc. | Flared stent and method of use |
US7867269B2 (en) | 2002-01-29 | 2011-01-11 | Medtronic Vascular, Inc. | Flared stent and method for use |
US8858619B2 (en) | 2002-04-23 | 2014-10-14 | Medtronic, Inc. | System and method for implanting a replacement valve |
US20030216804A1 (en) * | 2002-05-14 | 2003-11-20 | Debeer Nicholas C. | Shape memory polymer stent |
US7500986B2 (en) * | 2002-07-11 | 2009-03-10 | Medtronic Vascular, Inc. | Expandable body having deployable microstructures and related methods |
US20060122684A1 (en) * | 2002-07-11 | 2006-06-08 | Whye-Kei Lye | Expandable body having deployable microstructures and related methods |
US7255710B2 (en) * | 2002-08-06 | 2007-08-14 | Icon Medical Corp. | Helical stent with micro-latches |
US20040093076A1 (en) * | 2002-08-06 | 2004-05-13 | Jason White | Helical stent with micro-latches |
US7862608B2 (en) | 2002-12-24 | 2011-01-04 | Novostent Corporation | Vascular prosthesis and methods of use |
US20060030934A1 (en) * | 2002-12-24 | 2006-02-09 | Novostent Corporation | Vascular prosthesis having improved flexibility and nested cell delivery configuration |
US20040122504A1 (en) * | 2002-12-24 | 2004-06-24 | Michael Hogendijk | Vascular prosthesis and methods of use |
US7846198B2 (en) | 2002-12-24 | 2010-12-07 | Novostent Corporation | Vascular prosthesis and methods of use |
US20050165469A1 (en) * | 2002-12-24 | 2005-07-28 | Michael Hogendijk | Vascular prosthesis including torsional stabilizer and methods of use |
US7901448B2 (en) * | 2002-12-24 | 2011-03-08 | Novostent Corporation | Vascular prothesis having interdigitating edges and methods of use |
US20050033410A1 (en) * | 2002-12-24 | 2005-02-10 | Novostent Corporation | Vascular prothesis having flexible configuration |
US20060052861A1 (en) * | 2002-12-24 | 2006-03-09 | Novostent Corporation | Vascular prothesis having interdigitating edges and methods of use |
US20040158314A1 (en) * | 2002-12-24 | 2004-08-12 | Novostent Corporation | Ribbon-type vascular prosthesis having stress-relieving articulation and methods of use |
US20040160685A1 (en) * | 2003-01-27 | 2004-08-19 | Everardo Daniel Faires Quiros | Lower rear view mirror (LRVM for short) |
US7785361B2 (en) | 2003-03-26 | 2010-08-31 | Julian Nikolchev | Implant delivery technologies |
US8016869B2 (en) | 2003-03-26 | 2011-09-13 | Biosensors International Group, Ltd. | Guidewire-less stent delivery methods |
US7771463B2 (en) * | 2003-03-26 | 2010-08-10 | Ton Dai T | Twist-down implant delivery technologies |
US20050021128A1 (en) * | 2003-07-24 | 2005-01-27 | Medtronic Vascular, Inc. | Compliant, porous, rolled stent |
US9579194B2 (en) | 2003-10-06 | 2017-02-28 | Medtronic ATS Medical, Inc. | Anchoring structure with concave landing zone |
US7503930B2 (en) | 2003-12-10 | 2009-03-17 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US10357359B2 (en) | 2003-12-23 | 2019-07-23 | Boston Scientific Scimed Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US8858620B2 (en) | 2003-12-23 | 2014-10-14 | Sadra Medical Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US9956075B2 (en) | 2003-12-23 | 2018-05-01 | Boston Scientific Scimed Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7959672B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical | Replacement valve and anchor |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US8048153B2 (en) | 2003-12-23 | 2011-11-01 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US8052749B2 (en) | 2003-12-23 | 2011-11-08 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US8894703B2 (en) | 2003-12-23 | 2014-11-25 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
US8840662B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve and method |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US9872768B2 (en) | 2003-12-23 | 2018-01-23 | Boston Scientific Scimed, Inc. | Medical devices and delivery systems for delivering medical devices |
US9358110B2 (en) | 2003-12-23 | 2016-06-07 | Boston Scientific Scimed, Inc. | Medical devices and delivery systems for delivering medical devices |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US10925724B2 (en) | 2003-12-23 | 2021-02-23 | Boston Scientific Scimed, Inc. | Replacement valve and anchor |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US9861476B2 (en) | 2003-12-23 | 2018-01-09 | Boston Scientific Scimed Inc. | Leaflet engagement elements and methods for use thereof |
US8828078B2 (en) | 2003-12-23 | 2014-09-09 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US11696825B2 (en) | 2003-12-23 | 2023-07-11 | Boston Scientific Scimed, Inc. | Replacement valve and anchor |
US8951299B2 (en) | 2003-12-23 | 2015-02-10 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US20050137689A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delware Corporation | Retrievable heart valve anchor and method |
US9358106B2 (en) | 2003-12-23 | 2016-06-07 | Boston Scientific Scimed Inc. | Methods and apparatus for performing valvuloplasty |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US7988724B2 (en) | 2003-12-23 | 2011-08-02 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US10772724B2 (en) | 2003-12-23 | 2020-09-15 | Boston Scientific Scimed, Inc. | Medical devices and delivery systems for delivering medical devices |
US10206774B2 (en) | 2003-12-23 | 2019-02-19 | Boston Scientific Scimed Inc. | Low profile heart valve and delivery system |
US9387076B2 (en) | 2003-12-23 | 2016-07-12 | Boston Scientific Scimed Inc. | Medical devices and delivery systems for delivering medical devices |
US8231670B2 (en) | 2003-12-23 | 2012-07-31 | Sadra Medical, Inc. | Repositionable heart valve and method |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US10716663B2 (en) | 2003-12-23 | 2020-07-21 | Boston Scientific Scimed, Inc. | Methods and apparatus for performing valvuloplasty |
US8246678B2 (en) | 2003-12-23 | 2012-08-21 | Sadra Medicl, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8252052B2 (en) | 2003-12-23 | 2012-08-28 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7748389B2 (en) | 2003-12-23 | 2010-07-06 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US9585750B2 (en) | 2003-12-23 | 2017-03-07 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US9585749B2 (en) | 2003-12-23 | 2017-03-07 | Boston Scientific Scimed, Inc. | Replacement heart valve assembly |
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US10258465B2 (en) | 2003-12-23 | 2019-04-16 | Boston Scientific Scimed Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US9011521B2 (en) | 2003-12-23 | 2015-04-21 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US11185408B2 (en) | 2003-12-23 | 2021-11-30 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US7824443B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Medical implant delivery and deployment tool |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US9532872B2 (en) | 2003-12-23 | 2017-01-03 | Boston Scientific Scimed, Inc. | Systems and methods for delivering a medical implant |
US10314695B2 (en) | 2003-12-23 | 2019-06-11 | Boston Scientific Scimed Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US9320599B2 (en) | 2003-12-23 | 2016-04-26 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US9308085B2 (en) | 2003-12-23 | 2016-04-12 | Boston Scientific Scimed, Inc. | Repositionable heart valve and method |
US10478289B2 (en) | 2003-12-23 | 2019-11-19 | Boston Scientific Scimed, Inc. | Replacement valve and anchor |
US7824442B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US9277991B2 (en) | 2003-12-23 | 2016-03-08 | Boston Scientific Scimed, Inc. | Low profile heart valve and delivery system |
US11278398B2 (en) | 2003-12-23 | 2022-03-22 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US10335273B2 (en) | 2003-12-23 | 2019-07-02 | Boston Scientific Scimed Inc. | Leaflet engagement elements and methods for use thereof |
US10426608B2 (en) | 2003-12-23 | 2019-10-01 | Boston Scientific Scimed, Inc. | Repositionable heart valve |
US10413412B2 (en) | 2003-12-23 | 2019-09-17 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US11285002B2 (en) | 2003-12-23 | 2022-03-29 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US8623078B2 (en) | 2003-12-23 | 2014-01-07 | Sadra Medical, Inc. | Replacement valve and anchor |
US8623076B2 (en) | 2003-12-23 | 2014-01-07 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US10413409B2 (en) | 2003-12-23 | 2019-09-17 | Boston Scientific Scimed, Inc. | Systems and methods for delivering a medical implant |
US9393113B2 (en) | 2003-12-23 | 2016-07-19 | Boston Scientific Scimed Inc. | Retrievable heart valve anchor and method |
US9149193B2 (en) * | 2004-01-13 | 2015-10-06 | Remon Medical Technologies Ltd | Devices for fixing a sensor in a lumen |
US20090270742A1 (en) * | 2004-01-13 | 2009-10-29 | Remon Medical Technologies Ltd. | Devices for fixing a sensor in a lumen |
US8535373B2 (en) | 2004-03-03 | 2013-09-17 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US8109996B2 (en) | 2004-03-03 | 2012-02-07 | Sorin Biomedica Cardio, S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US9867695B2 (en) | 2004-03-03 | 2018-01-16 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US9775704B2 (en) | 2004-04-23 | 2017-10-03 | Medtronic3F Therapeutics, Inc. | Implantable valve prosthesis |
US7766960B2 (en) | 2004-04-30 | 2010-08-03 | Novostent Corporation | Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use |
US20050246008A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery system for vascular prostheses and methods of use |
US20050246010A1 (en) * | 2004-04-30 | 2005-11-03 | Novostent Corporation | Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use |
US10449040B2 (en) | 2004-05-05 | 2019-10-22 | Speyside Medical, LLC | Method of treating a patient using a retrievable transcatheter prosthetic heart valve |
US20090082857A1 (en) * | 2004-05-05 | 2009-03-26 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
US8377118B2 (en) | 2004-05-05 | 2013-02-19 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
US9510941B2 (en) | 2004-05-05 | 2016-12-06 | Direct Flow Medical, Inc. | Method of treating a patient using a retrievable transcatheter prosthetic heart valve |
US8668733B2 (en) | 2004-06-16 | 2014-03-11 | Sadra Medical, Inc. | Everting heart valve |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US9744035B2 (en) | 2004-06-16 | 2017-08-29 | Boston Scientific Scimed, Inc. | Everting heart valve |
US8992608B2 (en) | 2004-06-16 | 2015-03-31 | Sadra Medical, Inc. | Everting heart valve |
US11484405B2 (en) | 2004-06-16 | 2022-11-01 | Boston Scientific Scimed, Inc. | Everting heart valve |
US8591570B2 (en) | 2004-09-07 | 2013-11-26 | Medtronic, Inc. | Prosthetic heart valve for replacing previously implanted heart valve |
US20060058870A1 (en) * | 2004-09-14 | 2006-03-16 | Vascular Architects, Inc., A Delaware Corporation | Covered stent with controlled therapeutic agent diffusion |
US7063720B2 (en) | 2004-09-14 | 2006-06-20 | The Wallace Enterprises, Inc. | Covered stent with controlled therapeutic agent diffusion |
US20060074478A1 (en) * | 2004-09-28 | 2006-04-06 | Feller Frederick Iii | Thin film medical device and delivery system |
US20100030320A1 (en) * | 2004-09-28 | 2010-02-04 | Feller Iii Frederick | Thin film medical device and delivery system |
US9339368B2 (en) | 2004-09-28 | 2016-05-17 | Cordis Corporation | Thin film medical device and delivery system |
US20060079955A1 (en) * | 2004-10-07 | 2006-04-13 | Scimed Life Systems, Inc. | Non-shortening helical stent |
US7914570B2 (en) | 2004-10-07 | 2011-03-29 | Boston Scientific Scimed, Inc. | Non-shortening helical stent |
WO2006039818A1 (en) * | 2004-10-15 | 2006-04-20 | The University Of British Columbia | Orthopaedic helical coil fastener and apparatus and method for implantation thereof |
US10531952B2 (en) | 2004-11-05 | 2020-01-14 | Boston Scientific Scimed, Inc. | Medical devices and delivery systems for delivering medical devices |
US8617236B2 (en) | 2004-11-05 | 2013-12-31 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US8328868B2 (en) | 2004-11-05 | 2012-12-11 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US8562672B2 (en) | 2004-11-19 | 2013-10-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US9498329B2 (en) | 2004-11-19 | 2016-11-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US20060136049A1 (en) * | 2004-12-20 | 2006-06-22 | Rojo Nicholas A | Implantable systems and stents containing cells for therapeutic uses |
US20060136035A1 (en) * | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. A Delaware Corporation | Coiled endoluminal prosthesis system and delivery catheter |
WO2006068856A3 (en) * | 2004-12-20 | 2007-11-01 | Vascular Architects Inc | Coiled endoluminal prosthesis system, delivery catheter and method |
US9788978B2 (en) | 2004-12-20 | 2017-10-17 | Nicholas A. Rojo | Implantable systems and stents containing cells for therapeutic uses |
WO2006068856A2 (en) * | 2004-12-20 | 2006-06-29 | Vascular Architects, Inc. | Coiled endoluminal prosthesis system, delivery catheter and method |
WO2006069027A3 (en) * | 2004-12-20 | 2007-03-15 | Rojo Nicholas A | Implantable systems and stents containing cells for therapeutic uses |
US20060136034A1 (en) * | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. | Delivery catheter and method |
US20060136033A1 (en) * | 2004-12-20 | 2006-06-22 | Vascular Architects, Inc. | Coiled stent delivery system and method |
US20070219616A1 (en) * | 2004-12-20 | 2007-09-20 | Modesitt D B | Notched catheter |
US20070129637A1 (en) * | 2005-01-12 | 2007-06-07 | Remon Medical Technologies Ltd. | Devices For Fixing A Sensor In A Lumen |
US10390714B2 (en) | 2005-01-12 | 2019-08-27 | Remon Medical Technologies, Ltd. | Devices for fixing a sensor in a lumen |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US8539662B2 (en) | 2005-02-10 | 2013-09-24 | Sorin Group Italia S.R.L. | Cardiac-valve prosthesis |
US9486313B2 (en) | 2005-02-10 | 2016-11-08 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US8920492B2 (en) | 2005-02-10 | 2014-12-30 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US9895223B2 (en) | 2005-02-10 | 2018-02-20 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US8540768B2 (en) | 2005-02-10 | 2013-09-24 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US10549101B2 (en) | 2005-04-25 | 2020-02-04 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US9415225B2 (en) | 2005-04-25 | 2016-08-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US9649495B2 (en) | 2005-04-25 | 2017-05-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US12076238B2 (en) | 2005-05-13 | 2024-09-03 | Medtronic CV Luxembourg S.a.r.l. | Heart valve prosthesis and methods of manufacture and use |
US8226710B2 (en) | 2005-05-13 | 2012-07-24 | Medtronic Corevalve, Inc. | Heart valve prosthesis and methods of manufacture and use |
US10478291B2 (en) | 2005-05-13 | 2019-11-19 | Medtronic CV Luxembourg S.a.r.l | Heart valve prosthesis and methods of manufacture and use |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US9060857B2 (en) | 2005-05-13 | 2015-06-23 | Medtronic Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US9504564B2 (en) | 2005-05-13 | 2016-11-29 | Medtronic Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US11284997B2 (en) | 2005-05-13 | 2022-03-29 | Medtronic CV Luxembourg S.a.r.l | Heart valve prosthesis and methods of manufacture and use |
USD812226S1 (en) | 2005-05-13 | 2018-03-06 | Medtronic Corevalve Llc | Heart valve prosthesis |
USD732666S1 (en) | 2005-05-13 | 2015-06-23 | Medtronic Corevalve, Inc. | Heart valve prosthesis |
US7637939B2 (en) | 2005-06-30 | 2009-12-29 | Boston Scientific Scimed, Inc. | Hybrid stent |
US20070005126A1 (en) * | 2005-06-30 | 2007-01-04 | Boston Scientific Scimed, Inc. | Hybrid stent |
US10370150B2 (en) | 2005-09-13 | 2019-08-06 | Boston Scientific Scimed Inc. | Two-part package for medical implant |
US7712606B2 (en) | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
US9393094B2 (en) | 2005-09-13 | 2016-07-19 | Boston Scientific Scimed, Inc. | Two-part package for medical implant |
US8136659B2 (en) | 2005-09-13 | 2012-03-20 | Sadra Medical, Inc. | Two-part package for medical implant |
US8506620B2 (en) | 2005-09-26 | 2013-08-13 | Medtronic, Inc. | Prosthetic cardiac and venous valves |
US8292946B2 (en) | 2005-10-25 | 2012-10-23 | Boston Scientific Scimed, Inc. | Medical implants with limited resistance to migration |
US20070093888A1 (en) * | 2005-10-25 | 2007-04-26 | Scimed Life Systems, Inc. | Medical implants with limited resistance to migration |
US8900285B2 (en) | 2005-11-02 | 2014-12-02 | Biosensors International Group, Ltd. | Covering electrolytic restraint implant delivery systems |
US8579954B2 (en) | 2005-11-02 | 2013-11-12 | Biosensors International Group, Ltd. | Untwisting restraint implant delivery system |
US8974509B2 (en) | 2005-11-02 | 2015-03-10 | Biosensors International Group, Ltd. | Pass-through restraint electrolytic implant delivery systems |
US7862602B2 (en) | 2005-11-02 | 2011-01-04 | Biosensors International Group, Ltd | Indirect-release electrolytic implant delivery systems |
US8273116B2 (en) | 2005-11-02 | 2012-09-25 | Biosensors International Group, Ltd. | Indirect-release electrolytic implant delivery systems |
EP1942831A4 (en) * | 2005-11-02 | 2015-07-22 | Cardiomind Inc | Twist-down implant delivery technologies |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US10299922B2 (en) | 2005-12-22 | 2019-05-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US10314701B2 (en) | 2005-12-22 | 2019-06-11 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US8060214B2 (en) | 2006-01-05 | 2011-11-15 | Cardiac Pacemakers, Inc. | Implantable medical device with inductive coil configurable for mechanical fixation |
US9078781B2 (en) | 2006-01-11 | 2015-07-14 | Medtronic, Inc. | Sterile cover for compressible stents used in percutaneous device delivery systems |
US8828077B2 (en) | 2006-03-15 | 2014-09-09 | Medinol Ltd. | Flat process of preparing drug eluting stents |
US10058421B2 (en) | 2006-03-28 | 2018-08-28 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US8075615B2 (en) | 2006-03-28 | 2011-12-13 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US9331328B2 (en) | 2006-03-28 | 2016-05-03 | Medtronic, Inc. | Prosthetic cardiac valve from pericardium material and methods of making same |
US7625403B2 (en) | 2006-04-04 | 2009-12-01 | Medtronic Vascular, Inc. | Valved conduit designed for subsequent catheter delivered valve therapy |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US7740655B2 (en) | 2006-04-06 | 2010-06-22 | Medtronic Vascular, Inc. | Reinforced surgical conduit for implantation of a stented valve therein |
US7591848B2 (en) | 2006-04-06 | 2009-09-22 | Medtronic Vascular, Inc. | Riveted stent valve for percutaneous use |
US20080077054A1 (en) * | 2006-08-28 | 2008-03-27 | Femsuite, Llc | Cervical dilator and methods of use |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US8057399B2 (en) | 2006-09-15 | 2011-11-15 | Cardiac Pacemakers, Inc. | Anchor for an implantable sensor |
US9026229B2 (en) | 2006-09-15 | 2015-05-05 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US9713427B2 (en) | 2006-09-15 | 2017-07-25 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US11304802B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8876894B2 (en) | 2006-09-19 | 2014-11-04 | Medtronic Ventor Technologies Ltd. | Leaflet-sensitive valve fixation member |
US12076237B2 (en) | 2006-09-19 | 2024-09-03 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8348995B2 (en) | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies, Ltd. | Axial-force fixation member for valve |
US8348996B2 (en) | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis implantation techniques |
US11304801B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8747460B2 (en) | 2006-09-19 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Methods for implanting a valve prothesis |
US8414643B2 (en) | 2006-09-19 | 2013-04-09 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8771346B2 (en) | 2006-09-19 | 2014-07-08 | Medtronic Ventor Technologies Ltd. | Valve prosthetic fixation techniques using sandwiching |
US8771345B2 (en) | 2006-09-19 | 2014-07-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
US9913714B2 (en) | 2006-09-19 | 2018-03-13 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US8052750B2 (en) | 2006-09-19 | 2011-11-08 | Medtronic Ventor Technologies Ltd | Valve prosthesis fixation techniques using sandwiching |
US9138312B2 (en) | 2006-09-19 | 2015-09-22 | Medtronic Ventor Technologies Ltd. | Valve prostheses |
US9301834B2 (en) | 2006-09-19 | 2016-04-05 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US10543077B2 (en) | 2006-09-19 | 2020-01-28 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US8834564B2 (en) | 2006-09-19 | 2014-09-16 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US10195033B2 (en) | 2006-09-19 | 2019-02-05 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
US9387071B2 (en) | 2006-09-19 | 2016-07-12 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US9642704B2 (en) | 2006-09-19 | 2017-05-09 | Medtronic Ventor Technologies Ltd. | Catheter for implanting a valve prosthesis |
US10004601B2 (en) | 2006-09-19 | 2018-06-26 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
US11304800B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US9827097B2 (en) | 2006-09-19 | 2017-11-28 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8876895B2 (en) | 2006-09-19 | 2014-11-04 | Medtronic Ventor Technologies Ltd. | Valve fixation member having engagement arms |
US8784478B2 (en) | 2006-10-16 | 2014-07-22 | Medtronic Corevalve, Inc. | Transapical delivery system with ventruculo-arterial overlfow bypass |
US8556881B2 (en) | 2006-10-19 | 2013-10-15 | Direct Flow Medical, Inc. | Catheter guidance through a calcified aortic valve |
US7935144B2 (en) * | 2006-10-19 | 2011-05-03 | Direct Flow Medical, Inc. | Profile reduction of valve implant |
US9572661B2 (en) | 2006-10-19 | 2017-02-21 | Direct Flow Medical, Inc. | Profile reduction of valve implant |
US9629736B2 (en) | 2006-10-22 | 2017-04-25 | Idev Technologies, Inc. | Secured strand end devices |
US9585776B2 (en) | 2006-10-22 | 2017-03-07 | Idev Technologies, Inc. | Secured strand end devices |
US8739382B2 (en) | 2006-10-22 | 2014-06-03 | Idev Technologies, Inc. | Secured strand end devices |
US8419788B2 (en) | 2006-10-22 | 2013-04-16 | Idev Technologies, Inc. | Secured strand end devices |
US9408729B2 (en) | 2006-10-22 | 2016-08-09 | Idev Technologies, Inc. | Secured strand end devices |
US9408730B2 (en) | 2006-10-22 | 2016-08-09 | Idev Technologies, Inc. | Secured strand end devices |
US9895242B2 (en) | 2006-10-22 | 2018-02-20 | Idev Technologies, Inc. | Secured strand end devices |
US9149374B2 (en) | 2006-10-22 | 2015-10-06 | Idev Technologies, Inc. | Methods for manufacturing secured strand end devices |
US8966733B2 (en) | 2006-10-22 | 2015-03-03 | Idev Technologies, Inc. | Secured strand end devices |
US8876881B2 (en) | 2006-10-22 | 2014-11-04 | Idev Technologies, Inc. | Devices for stent advancement |
US10470902B2 (en) | 2006-10-22 | 2019-11-12 | Idev Technologies, Inc. | Secured strand end devices |
US9295550B2 (en) | 2006-12-06 | 2016-03-29 | Medtronic CV Luxembourg S.a.r.l. | Methods for delivering a self-expanding valve |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
US9504568B2 (en) | 2007-02-16 | 2016-11-29 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US7871436B2 (en) | 2007-02-16 | 2011-01-18 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US20080221658A1 (en) * | 2007-03-09 | 2008-09-11 | Novostent Corporation | Vascular prosthesis and methods of use |
US8348994B2 (en) | 2007-03-09 | 2013-01-08 | Novostent Corporation | Vascular prosthesis with alternating helical sections |
US20080221663A1 (en) * | 2007-03-09 | 2008-09-11 | Novostent Corporation | Vascular prosthesis and methods of use |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US9585754B2 (en) | 2007-04-20 | 2017-03-07 | Medtronic, Inc. | Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof |
US9237886B2 (en) | 2007-04-20 | 2016-01-19 | Medtronic, Inc. | Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof |
US8204599B2 (en) | 2007-05-02 | 2012-06-19 | Cardiac Pacemakers, Inc. | System for anchoring an implantable sensor in a vessel |
US20080294267A1 (en) * | 2007-05-25 | 2008-11-27 | C.R. Bard, Inc. | Twisted stent |
US9265636B2 (en) | 2007-05-25 | 2016-02-23 | C. R. Bard, Inc. | Twisted stent |
US9731141B2 (en) | 2007-06-14 | 2017-08-15 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
US9023094B2 (en) | 2007-06-25 | 2015-05-05 | Microvention, Inc. | Self-expanding prosthesis |
US10188516B2 (en) | 2007-08-20 | 2019-01-29 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US8747458B2 (en) | 2007-08-20 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US9393112B2 (en) | 2007-08-20 | 2016-07-19 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US10130463B2 (en) | 2007-08-23 | 2018-11-20 | Dfm, Llc | Translumenally implantable heart valve with formed in place support |
US10856970B2 (en) | 2007-10-10 | 2020-12-08 | Medtronic Ventor Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US10966823B2 (en) | 2007-10-12 | 2021-04-06 | Sorin Group Italia S.R.L. | Expandable valve prosthesis with sealing mechanism |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
US20090112237A1 (en) * | 2007-10-26 | 2009-04-30 | Cook Critical Care Incorporated | Vascular conduit and delivery system for open surgical placement |
US8506583B2 (en) | 2007-10-26 | 2013-08-13 | Cook Medical Technologies Llc | Method for open surgical placement |
US8628566B2 (en) | 2008-01-24 | 2014-01-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
US10758343B2 (en) | 2008-01-24 | 2020-09-01 | Medtronic, Inc. | Stent for prosthetic heart valves |
US10820993B2 (en) | 2008-01-24 | 2020-11-03 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8157853B2 (en) * | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US10016274B2 (en) | 2008-01-24 | 2018-07-10 | Medtronic, Inc. | Stent for prosthetic heart valves |
US11786367B2 (en) | 2008-01-24 | 2023-10-17 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9925079B2 (en) | 2008-01-24 | 2018-03-27 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US10646335B2 (en) | 2008-01-24 | 2020-05-12 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9089422B2 (en) | 2008-01-24 | 2015-07-28 | Medtronic, Inc. | Markers for prosthetic heart valves |
US11284999B2 (en) | 2008-01-24 | 2022-03-29 | Medtronic, Inc. | Stents for prosthetic heart valves |
US7972378B2 (en) | 2008-01-24 | 2011-07-05 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8673000B2 (en) | 2008-01-24 | 2014-03-18 | Medtronic, Inc. | Stents for prosthetic heart valves |
US10639182B2 (en) | 2008-01-24 | 2020-05-05 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US11259919B2 (en) | 2008-01-24 | 2022-03-01 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8157852B2 (en) * | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US11083573B2 (en) | 2008-01-24 | 2021-08-10 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US9393115B2 (en) | 2008-01-24 | 2016-07-19 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8685077B2 (en) | 2008-01-24 | 2014-04-01 | Medtronics, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US11951007B2 (en) | 2008-01-24 | 2024-04-09 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US9339382B2 (en) | 2008-01-24 | 2016-05-17 | Medtronic, Inc. | Stents for prosthetic heart valves |
US11607311B2 (en) | 2008-01-24 | 2023-03-21 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9333100B2 (en) | 2008-01-24 | 2016-05-10 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9149358B2 (en) * | 2008-01-24 | 2015-10-06 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
US10245166B2 (en) | 2008-02-22 | 2019-04-02 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US8961593B2 (en) | 2008-02-28 | 2015-02-24 | Medtronic, Inc. | Prosthetic heart valve systems |
US8613765B2 (en) | 2008-02-28 | 2013-12-24 | Medtronic, Inc. | Prosthetic heart valve systems |
US9592120B2 (en) | 2008-03-18 | 2017-03-14 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US11278408B2 (en) | 2008-03-18 | 2022-03-22 | Medtronic Venter Technologies, Ltd. | Valve suturing and implantation procedures |
US10856979B2 (en) | 2008-03-18 | 2020-12-08 | Medtronic Ventor Technologies Ltd. | Valve suturing and implantation procedures |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US11602430B2 (en) | 2008-03-18 | 2023-03-14 | Medtronic Ventor Technologies Ltd. | Valve suturing and implantation procedures |
US11141573B2 (en) | 2008-03-21 | 2021-10-12 | Cagent Vascular, Inc. | Method for plaque serration |
US11229777B2 (en) | 2008-03-21 | 2022-01-25 | Cagent Vascular, Inc. | System and method for plaque serration |
US11166742B2 (en) | 2008-03-21 | 2021-11-09 | Cagent Vascular, Inc. | Method of enhancing drug uptake from a drug-eluting balloon |
US11529501B2 (en) | 2008-03-21 | 2022-12-20 | Gagent Vascular, Inc. | System and method for plaque serration |
US11219750B2 (en) | 2008-03-21 | 2022-01-11 | Cagent Vascular, Inc. | System and method for plaque serration |
US8430927B2 (en) | 2008-04-08 | 2013-04-30 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US10245142B2 (en) | 2008-04-08 | 2019-04-02 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US8764812B2 (en) | 2008-04-11 | 2014-07-01 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8357192B2 (en) | 2008-04-11 | 2013-01-22 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8696743B2 (en) | 2008-04-23 | 2014-04-15 | Medtronic, Inc. | Tissue attachment devices and methods for prosthetic heart valves |
US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US8511244B2 (en) | 2008-04-23 | 2013-08-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US8840661B2 (en) | 2008-05-16 | 2014-09-23 | Sorin Group Italia S.R.L. | Atraumatic prosthetic heart valve prosthesis |
US9700701B2 (en) | 2008-07-01 | 2017-07-11 | Endologix, Inc. | Catheter system and methods of using same |
US8216295B2 (en) | 2008-07-01 | 2012-07-10 | Endologix, Inc. | Catheter system and methods of using same |
US10512758B2 (en) | 2008-07-01 | 2019-12-24 | Endologix, Inc. | Catheter system and methods of using same |
US8414639B2 (en) * | 2008-07-08 | 2013-04-09 | Boston Scientific Scimed, Inc. | Closed-cell flexible stent hybrid |
US20100010619A1 (en) * | 2008-07-08 | 2010-01-14 | Boston Scientific Scimed, Inc. | Closed-Cell Flexible Stent Hybrid |
US8934987B2 (en) | 2008-07-15 | 2015-01-13 | Cardiac Pacemakers, Inc. | Implant assist apparatus for acoustically enabled implantable medical device |
US8998981B2 (en) | 2008-09-15 | 2015-04-07 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US10806570B2 (en) | 2008-09-15 | 2020-10-20 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US11026786B2 (en) | 2008-09-15 | 2021-06-08 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US9943407B2 (en) | 2008-09-15 | 2018-04-17 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
US10321997B2 (en) | 2008-09-17 | 2019-06-18 | Medtronic CV Luxembourg S.a.r.l. | Delivery system for deployment of medical devices |
US9532873B2 (en) | 2008-09-17 | 2017-01-03 | Medtronic CV Luxembourg S.a.r.l. | Methods for deployment of medical devices |
US11166815B2 (en) | 2008-09-17 | 2021-11-09 | Medtronic CV Luxembourg S.a.r.l | Delivery system for deployment of medical devices |
US9592040B2 (en) * | 2008-09-20 | 2017-03-14 | Micokoll Inc. | Apparatus and method for tissue adhesion |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
US20100122698A1 (en) * | 2008-11-19 | 2010-05-20 | The Nemours Foundation | Neonatal airway stent |
US10098733B2 (en) | 2008-12-23 | 2018-10-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US8834563B2 (en) | 2008-12-23 | 2014-09-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US8694129B2 (en) | 2009-02-13 | 2014-04-08 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US8512397B2 (en) | 2009-04-27 | 2013-08-20 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit |
US8945202B2 (en) | 2009-04-28 | 2015-02-03 | Endologix, Inc. | Fenestrated prosthesis |
US10603196B2 (en) | 2009-04-28 | 2020-03-31 | Endologix, Inc. | Fenestrated prosthesis |
US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US10568994B2 (en) | 2009-05-20 | 2020-02-25 | 480 Biomedical Inc. | Drug-eluting medical implants |
US8137396B2 (en) | 2009-05-20 | 2012-03-20 | 480 Biomedical, Inc | Medical implant |
US10617796B2 (en) | 2009-05-20 | 2020-04-14 | Lyra Therapeutics, Inc. | Drug eluting medical implant |
US8540765B2 (en) | 2009-05-20 | 2013-09-24 | 480 Biomedical, Inc. | Medical implant |
US9278016B2 (en) | 2009-05-20 | 2016-03-08 | 480 Biomedical, Inc. | Medical implant |
US20130317600A1 (en) * | 2009-05-20 | 2013-11-28 | Maria Palasis | Drug eluting medical implant |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US20130304177A1 (en) * | 2009-05-20 | 2013-11-14 | Maria Palasis | Drug Eluting Medical Implant |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
US9155638B2 (en) * | 2009-05-20 | 2015-10-13 | 480 Biomedical, Inc. | Drug eluting medical implant |
US8657870B2 (en) | 2009-06-26 | 2014-02-25 | Biosensors International Group, Ltd. | Implant delivery apparatus and methods with electrolytic release |
US8491646B2 (en) | 2009-07-15 | 2013-07-23 | Endologix, Inc. | Stent graft |
US9757262B2 (en) | 2009-07-15 | 2017-09-12 | Endologix, Inc. | Stent graft |
US8118856B2 (en) | 2009-07-27 | 2012-02-21 | Endologix, Inc. | Stent graft |
US8821564B2 (en) | 2009-07-27 | 2014-09-02 | Endologix, Inc. | Stent graft |
US10874502B2 (en) | 2009-07-27 | 2020-12-29 | Endologix Llc | Stent graft |
US9907642B2 (en) | 2009-07-27 | 2018-03-06 | Endologix, Inc. | Stent graft |
US20110082464A1 (en) * | 2009-10-05 | 2011-04-07 | Arsenal Medical, Inc. | Polymeric Implant Delivery System |
US8372133B2 (en) | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system |
US8808369B2 (en) | 2009-10-05 | 2014-08-19 | Mayo Foundation For Medical Education And Research | Minimally invasive aortic valve replacement |
WO2011091362A1 (en) * | 2010-01-25 | 2011-07-28 | Jones Donald K | Methods and systems for performing vascular reconstruction |
US9226826B2 (en) | 2010-02-24 | 2016-01-05 | Medtronic, Inc. | Transcatheter valve structure and methods for valve delivery |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US10716665B2 (en) | 2010-04-01 | 2020-07-21 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US9925044B2 (en) | 2010-04-01 | 2018-03-27 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US11554010B2 (en) | 2010-04-01 | 2023-01-17 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US11833041B2 (en) | 2010-04-01 | 2023-12-05 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US10478299B2 (en) | 2010-05-19 | 2019-11-19 | Dfm, Llc | Low crossing profile delivery catheter for cardiovascular prosthetic implant |
US9248017B2 (en) | 2010-05-21 | 2016-02-02 | Sorin Group Italia S.R.L. | Support device for valve prostheses and corresponding kit |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US12121460B2 (en) | 2010-05-27 | 2024-10-22 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9192463B2 (en) | 2010-08-03 | 2015-11-24 | Cook Medical Technologies, LLC | Blood perfusion device |
US10271970B2 (en) | 2010-08-03 | 2019-04-30 | Cook Medical Technologies Llc | Blood perfusion device |
US10835376B2 (en) | 2010-09-01 | 2020-11-17 | Medtronic Vascular Galway | Prosthetic valve support structure |
US9918833B2 (en) | 2010-09-01 | 2018-03-20 | Medtronic Vascular Galway | Prosthetic valve support structure |
US11786368B2 (en) | 2010-09-01 | 2023-10-17 | Medtronic Vascular Galway | Prosthetic valve support structure |
US10869760B2 (en) | 2010-09-10 | 2020-12-22 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US10201418B2 (en) | 2010-09-10 | 2019-02-12 | Symetis, SA | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US8329021B2 (en) | 2010-10-28 | 2012-12-11 | Palmaz Scientific, Inc. | Method for mass transfer of micro-patterns onto medical devices |
US9422633B2 (en) | 2010-10-28 | 2016-08-23 | Palmaz Scientific, Inc. | Method for mass transfer of micro-patterns onto medical devices |
US8668818B2 (en) | 2010-10-28 | 2014-03-11 | Palmaz Scientific, Inc. | Method for mass transfer of micro-patterns onto medical devices |
US10669645B2 (en) | 2010-10-28 | 2020-06-02 | Vactronix Scientific, Llc | Pattern transfer device for mass transfer of micro-patterns onto medical devices |
US9987398B2 (en) | 2010-10-28 | 2018-06-05 | Vactronix Scientific, Llc | Pattern transfer device for mass transfer of micro-patterns onto medical devices |
US10258719B2 (en) | 2010-10-28 | 2019-04-16 | Vactronix Scientific, Llc | Pattern transfer device for mass transfer of micro-patterns onto medical devices |
US11406518B2 (en) | 2010-11-02 | 2022-08-09 | Endologix Llc | Apparatus and method of placement of a graft or graft system |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
US20140052162A1 (en) * | 2011-01-25 | 2014-02-20 | Acandis Gmbh & Co. Kg | Medical device having a lattice structure and treatment system having such a lattice structure |
US9161836B2 (en) | 2011-02-14 | 2015-10-20 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9289289B2 (en) | 2011-02-14 | 2016-03-22 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US8808350B2 (en) | 2011-03-01 | 2014-08-19 | Endologix, Inc. | Catheter system and methods of using same |
US9687374B2 (en) | 2011-03-01 | 2017-06-27 | Endologix, Inc. | Catheter system and methods of using same |
US10660775B2 (en) | 2011-03-01 | 2020-05-26 | Endologix, Inc. | Catheter system and methods of using same |
US9549835B2 (en) | 2011-03-01 | 2017-01-24 | Endologix, Inc. | Catheter system and methods of using same |
US9138233B2 (en) * | 2011-03-17 | 2015-09-22 | Micokoll Inc. | Apparatus and method for tissue adhesion |
US20150051708A1 (en) * | 2011-03-17 | 2015-02-19 | Microkoll Inc. | Apparatus and method for tissue adhesion |
US8728155B2 (en) | 2011-03-21 | 2014-05-20 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus and method for the treatment of valve dysfunction |
US11931252B2 (en) | 2011-03-21 | 2024-03-19 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus and method for the treatment of valve dysfunction |
US10456255B2 (en) | 2011-03-21 | 2019-10-29 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus and method for the treatment of valve dysfunction |
US11771544B2 (en) | 2011-05-05 | 2023-10-03 | Symetis Sa | Method and apparatus for compressing/loading stent-valves |
US8998976B2 (en) | 2011-07-12 | 2015-04-07 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
US9555219B2 (en) | 2011-11-10 | 2017-01-31 | Boston Scientific Scimed, Inc. | Direct connect flush system |
US9131926B2 (en) | 2011-11-10 | 2015-09-15 | Boston Scientific Scimed, Inc. | Direct connect flush system |
US10478300B2 (en) | 2011-11-15 | 2019-11-19 | Boston Scientific Scimed, Inc. | Bond between components of a medical device |
US9642705B2 (en) | 2011-11-15 | 2017-05-09 | Boston Scientific Scimed Inc. | Bond between components of a medical device |
US8940014B2 (en) | 2011-11-15 | 2015-01-27 | Boston Scientific Scimed, Inc. | Bond between components of a medical device |
US8951243B2 (en) | 2011-12-03 | 2015-02-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US9370421B2 (en) | 2011-12-03 | 2016-06-21 | Boston Scientific Scimed, Inc. | Medical device handle |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US9510945B2 (en) | 2011-12-20 | 2016-12-06 | Boston Scientific Scimed Inc. | Medical device handle |
US8685084B2 (en) | 2011-12-29 | 2014-04-01 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit and assembly method |
US9138314B2 (en) | 2011-12-29 | 2015-09-22 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit and assembly method |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
US11701216B2 (en) | 2012-06-18 | 2023-07-18 | Board Of Regents Of The University Of Nebraska | Stent to assist in arteriovenous fistula formation |
US10772718B1 (en) | 2012-06-18 | 2020-09-15 | Board Of Regents Of The University Of Nebraska | Stent to assist in arteriovenous fistula formation |
US10034739B2 (en) | 2012-06-18 | 2018-07-31 | Board Of Regents Of The University Of Nebraska | Stent to assist in arteriovenous fistula formation |
US10555809B2 (en) | 2012-06-19 | 2020-02-11 | Boston Scientific Scimed, Inc. | Replacement heart valve |
US11382739B2 (en) | 2012-06-19 | 2022-07-12 | Boston Scientific Scimed, Inc. | Replacement heart valve |
US11793637B2 (en) | 2013-05-03 | 2023-10-24 | Medtronic, Inc. | Valve delivery tool |
US9629718B2 (en) | 2013-05-03 | 2017-04-25 | Medtronic, Inc. | Valve delivery tool |
US10568739B2 (en) | 2013-05-03 | 2020-02-25 | Medtronic, Inc. | Valve delivery tool |
US11510780B2 (en) | 2013-07-17 | 2022-11-29 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US10154906B2 (en) | 2013-07-17 | 2018-12-18 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US9554899B2 (en) | 2013-07-17 | 2017-01-31 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US9561103B2 (en) | 2013-07-17 | 2017-02-07 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US12193934B2 (en) | 2013-07-17 | 2025-01-14 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US8870948B1 (en) | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US10624742B2 (en) | 2013-07-17 | 2020-04-21 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US10149761B2 (en) | 2013-07-17 | 2018-12-11 | Cephea Valve Technlologies, Inc. | System and method for cardiac valve repair and replacement |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10524945B2 (en) * | 2013-10-04 | 2020-01-07 | Covidien Lp | Stents twisted prior to deployment and untwisted during deployment |
US11160555B2 (en) | 2013-12-17 | 2021-11-02 | Board Of Regents Of The University Of Nebraska | Platform device and method of use to assist in anastomosis formation |
US10433847B2 (en) | 2013-12-17 | 2019-10-08 | The Board Of Regents Of The University Of Nebraska | Platform device and method of use to assist in anastomosis formation |
US11738181B2 (en) | 2014-06-04 | 2023-08-29 | Cagent Vascular, Inc. | Cage for medical balloon |
US20150351888A1 (en) * | 2014-06-04 | 2015-12-10 | Boston Scientific Scimed, Inc. | Devices and methods for delivery of implants |
US9974638B2 (en) * | 2014-06-04 | 2018-05-22 | Boston Scientific Scimed, Inc. | Devices and methods for delivery of implants |
US11298513B2 (en) | 2014-11-03 | 2022-04-12 | Cagent Vascular, Inc. | Serration balloon |
US11040178B2 (en) | 2014-11-03 | 2021-06-22 | Cagent Vascular, Llc | Serration balloon |
US11701502B2 (en) | 2014-11-03 | 2023-07-18 | Cagent Vascular, Inc. | Serration balloon |
US9901445B2 (en) | 2014-11-21 | 2018-02-27 | Boston Scientific Scimed, Inc. | Valve locking mechanism |
US10433953B2 (en) | 2014-12-09 | 2019-10-08 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US11147665B2 (en) | 2014-12-09 | 2021-10-19 | Cepha Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US10869755B2 (en) | 2014-12-09 | 2020-12-22 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US10548721B2 (en) | 2014-12-09 | 2020-02-04 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US9439757B2 (en) | 2014-12-09 | 2016-09-13 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US9492273B2 (en) | 2014-12-09 | 2016-11-15 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US10449043B2 (en) | 2015-01-16 | 2019-10-22 | Boston Scientific Scimed, Inc. | Displacement based lock and release mechanism |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US10201417B2 (en) | 2015-02-03 | 2019-02-12 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US10426617B2 (en) | 2015-03-06 | 2019-10-01 | Boston Scientific Scimed, Inc. | Low profile valve locking mechanism and commissure assembly |
US10285809B2 (en) | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
US10080652B2 (en) | 2015-03-13 | 2018-09-25 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US9757574B2 (en) | 2015-05-11 | 2017-09-12 | Rainbow Medical Ltd. | Dual chamber transvenous pacemaker |
US10143552B2 (en) | 2015-05-14 | 2018-12-04 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11786373B2 (en) | 2015-05-14 | 2023-10-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10849746B2 (en) | 2015-05-14 | 2020-12-01 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10470881B2 (en) | 2015-05-14 | 2019-11-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11617646B2 (en) | 2015-05-14 | 2023-04-04 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10555808B2 (en) | 2015-05-14 | 2020-02-11 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11129737B2 (en) | 2015-06-30 | 2021-09-28 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
US12186215B2 (en) | 2015-06-30 | 2025-01-07 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
US10195392B2 (en) | 2015-07-02 | 2019-02-05 | Boston Scientific Scimed, Inc. | Clip-on catheter |
US10335277B2 (en) | 2015-07-02 | 2019-07-02 | Boston Scientific Scimed Inc. | Adjustable nosecone |
US11730595B2 (en) | 2015-07-02 | 2023-08-22 | Boston Scientific Scimed, Inc. | Adjustable nosecone |
US9943426B2 (en) | 2015-07-15 | 2018-04-17 | Elixir Medical Corporation | Uncaging stent |
US10179041B2 (en) | 2015-08-12 | 2019-01-15 | Boston Scientific Scimed Icn. | Pinless release mechanism |
US10856973B2 (en) | 2015-08-12 | 2020-12-08 | Boston Scientific Scimed, Inc. | Replacement heart valve implant |
US10136991B2 (en) | 2015-08-12 | 2018-11-27 | Boston Scientific Scimed Inc. | Replacement heart valve implant |
US10779940B2 (en) | 2015-09-03 | 2020-09-22 | Boston Scientific Scimed, Inc. | Medical device handle |
US11266819B2 (en) | 2015-09-17 | 2022-03-08 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11123527B2 (en) | 2015-09-17 | 2021-09-21 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11266818B2 (en) | 2015-09-17 | 2022-03-08 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11717654B2 (en) | 2015-09-17 | 2023-08-08 | Cagent Vascular, Inc. | Wedge dissectors for a medical balloon |
US11491314B2 (en) | 2015-09-17 | 2022-11-08 | Cagent Vascular Lac. | Wedge dissectors for a medical balloon |
US10342660B2 (en) | 2016-02-02 | 2019-07-09 | Boston Scientific Inc. | Tensioned sheathing aids |
US20230090160A1 (en) * | 2016-05-12 | 2023-03-23 | St. Jude Medical, Cardiology Division, Inc. | Mitral Heart Valve Replacement |
US10245136B2 (en) | 2016-05-13 | 2019-04-02 | Boston Scientific Scimed Inc. | Containment vessel with implant sheathing guide |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11382742B2 (en) | 2016-05-13 | 2022-07-12 | Boston Scientific Scimed, Inc. | Medical device handle |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10383750B1 (en) | 2016-05-16 | 2019-08-20 | Elixir Medical Corporation | Uncaging stent |
US12011378B2 (en) | 2016-05-16 | 2024-06-18 | Elixir Medical Corporation | Uncaging stent |
US10918505B2 (en) | 2016-05-16 | 2021-02-16 | Elixir Medical Corporation | Uncaging stent |
US20170325938A1 (en) | 2016-05-16 | 2017-11-16 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
US10076431B2 (en) | 2016-05-16 | 2018-09-18 | Elixir Medical Corporation | Uncaging stent |
US10201416B2 (en) | 2016-05-16 | 2019-02-12 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
US11622872B2 (en) | 2016-05-16 | 2023-04-11 | Elixir Medical Corporation | Uncaging stent |
US10786374B2 (en) | 2016-05-16 | 2020-09-29 | Elixir Medical Corporation | Uncaging stent |
US10271976B2 (en) | 2016-05-16 | 2019-04-30 | Elixir Medical Corporation | Uncaging stent |
US10709552B2 (en) | 2016-05-16 | 2020-07-14 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
US11331187B2 (en) | 2016-06-17 | 2022-05-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
DE102016118600B4 (en) | 2016-09-30 | 2022-03-31 | Acandis Gmbh | Medical device, ribbon-shaped lattice structure, kit and method for manufacturing the same |
DE102016118600A1 (en) * | 2016-09-30 | 2018-04-05 | Acandis Gmbh & Co. Kg | Medical device, band-shaped lattice structure, set and method of making the same |
US10368990B2 (en) | 2017-01-23 | 2019-08-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10568737B2 (en) | 2017-01-23 | 2020-02-25 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11058535B2 (en) | 2017-01-23 | 2021-07-13 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10828153B2 (en) | 2017-01-23 | 2020-11-10 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11633278B2 (en) | 2017-01-23 | 2023-04-25 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11090158B2 (en) | 2017-01-23 | 2021-08-17 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US10828154B2 (en) | 2017-06-08 | 2020-11-10 | Boston Scientific Scimed, Inc. | Heart valve implant commissure support structure |
US11419717B2 (en) | 2017-06-29 | 2022-08-23 | Open Stent Solution Sas | Intraluminal support structure and prosthetic valve for the same |
US10898325B2 (en) | 2017-08-01 | 2021-01-26 | Boston Scientific Scimed, Inc. | Medical implant locking mechanism |
US10939996B2 (en) | 2017-08-16 | 2021-03-09 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
US11191641B2 (en) | 2018-01-19 | 2021-12-07 | Boston Scientific Scimed, Inc. | Inductance mode deployment sensors for transcatheter valve system |
US11246625B2 (en) | 2018-01-19 | 2022-02-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
US11147668B2 (en) | 2018-02-07 | 2021-10-19 | Boston Scientific Scimed, Inc. | Medical device delivery system with alignment feature |
US11439732B2 (en) | 2018-02-26 | 2022-09-13 | Boston Scientific Scimed, Inc. | Embedded radiopaque marker in adaptive seal |
WO2019213232A1 (en) * | 2018-05-01 | 2019-11-07 | Conceivex, Inc. | Conception device and related methods |
US10874432B2 (en) | 2018-05-01 | 2020-12-29 | Conceivex, Inc. | Conception device and related methods |
US11229517B2 (en) | 2018-05-15 | 2022-01-25 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US11969341B2 (en) | 2018-05-23 | 2024-04-30 | Corcym S.R.L. | Cardiac valve prosthesis |
US11241310B2 (en) | 2018-06-13 | 2022-02-08 | Boston Scientific Scimed, Inc. | Replacement heart valve delivery device |
US11369779B2 (en) | 2018-07-25 | 2022-06-28 | Cagent Vascular, Inc. | Medical balloon catheters with enhanced pushability |
US11241312B2 (en) | 2018-12-10 | 2022-02-08 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
CN109464229B (en) * | 2018-12-29 | 2024-01-05 | 韩新巍 | Biliary tract spiral particle stent and stent conveying catheter set |
CN109464229A (en) * | 2018-12-29 | 2019-03-15 | 韩新巍 | A kind of biliary tract spiral particle bracket and stent delivery catheter are set with |
US11439504B2 (en) | 2019-05-10 | 2022-09-13 | Boston Scientific Scimed, Inc. | Replacement heart valve with improved cusp washout and reduced loading |
CN113116455A (en) * | 2019-12-31 | 2021-07-16 | 辽宁垠艺生物科技股份有限公司 | High-support high-compliance net pipe structure |
CN113116455B (en) * | 2019-12-31 | 2023-10-24 | 辽宁垠艺生物科技股份有限公司 | High-support Gao Roushun network management structure |
US12233227B2 (en) | 2020-12-30 | 2025-02-25 | Cagent Vascular, Inc. | Systems and methods of depositing drug into tissue through serrations |
US12232760B2 (en) | 2021-10-05 | 2025-02-25 | Cagent Vascular, Inc. | Intravascular device |
US12171658B2 (en) | 2022-11-09 | 2024-12-24 | Jenavalve Technology, Inc. | Catheter system for sequential deployment of an expandable implant |
US12232957B2 (en) | 2023-01-27 | 2025-02-25 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
Also Published As
Publication number | Publication date |
---|---|
CA2283728A1 (en) | 1998-09-24 |
WO1998041170A1 (en) | 1998-09-24 |
EP1009326A1 (en) | 2000-06-21 |
DE69821245D1 (en) | 2004-02-26 |
JP2001516260A (en) | 2001-09-25 |
DE69821245T2 (en) | 2004-11-04 |
EP1009326B1 (en) | 2004-01-21 |
ATE258033T1 (en) | 2004-02-15 |
CA2283728C (en) | 2007-06-12 |
JP4073499B2 (en) | 2008-04-09 |
ES2210734T3 (en) | 2004-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5824053A (en) | Helical mesh endoprosthesis and methods of use | |
US6425915B1 (en) | Helical mesh endoprosthesis and methods of use | |
EP0969777B1 (en) | Coiled sheet stent having helical articulation and methods of use | |
JP4498709B2 (en) | Expandable stent and delivery system | |
US5797952A (en) | System and method for delivering helical stents | |
US8002815B2 (en) | Delivery system and method for vascular prosthesis | |
JP4473506B2 (en) | Selectively thinned coiled sheet stent and method for making the same | |
EP1124505B2 (en) | Endoluminal grafts having continuously curvilinear wireforms | |
US5800519A (en) | Tubular medical prosthesis for use in a body lumen | |
EP1631214B1 (en) | Stent delivery system having improved securement means | |
US5899934A (en) | Dual stent | |
US20050021128A1 (en) | Compliant, porous, rolled stent | |
EP0357003A2 (en) | Radially expandable endoprothesis | |
US20030045923A1 (en) | Hybrid balloon expandable/self expanding stent | |
US20150366690A1 (en) | Stent delivery system with anchoring guide wire and method for deploying a self-expanding stent | |
WO1997048343A9 (en) | System and method for delivering helical stents | |
JP2003503150A (en) | Flexible and stretchable wound stent | |
US7491227B2 (en) | Coiled-sheet stent with flexible mesh design | |
WO2007041586A2 (en) | Vascular prosthesis having interdigitating edges and methods of use | |
US20090093869A1 (en) | Medical device with curved struts | |
KR100406255B1 (en) | Stent and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENDOTEX INTERVENTIONAL SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHOSRAVI, FARHAD;HOGENDIJK, MICHAEL;ROSS, MICHAEL R.;REEL/FRAME:009065/0852;SIGNING DATES FROM 19980130 TO 19980313 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |