USRE34792E - Additive composition for water-based inks - Google Patents
Additive composition for water-based inks Download PDFInfo
- Publication number
- USRE34792E USRE34792E US07/851,430 US85143092A USRE34792E US RE34792 E USRE34792 E US RE34792E US 85143092 A US85143092 A US 85143092A US RE34792 E USRE34792 E US RE34792E
- Authority
- US
- United States
- Prior art keywords
- iaddend
- iadd
- dispersion
- weight
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 239000000203 mixture Substances 0.000 title claims description 108
- 239000000976 ink Substances 0.000 title abstract description 82
- 239000000654 additive Substances 0.000 title description 29
- 230000000996 additive effect Effects 0.000 title description 28
- 239000006185 dispersion Substances 0.000 claims abstract description 80
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002270 dispersing agent Substances 0.000 claims abstract description 15
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims abstract description 10
- -1 propylene, butylene, vinyl Chemical group 0.000 claims description 93
- 239000004698 Polyethylene Substances 0.000 claims description 87
- 229920000573 polyethylene Polymers 0.000 claims description 75
- 229930195733 hydrocarbon Natural products 0.000 claims description 39
- 150000002430 hydrocarbons Chemical class 0.000 claims description 39
- 239000004215 Carbon black (E152) Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 20
- 238000009472 formulation Methods 0.000 claims description 16
- 239000001993 wax Substances 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000012188 paraffin wax Substances 0.000 claims description 8
- 239000012169 petroleum derived wax Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- 239000000049 pigment Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 239000004200 microcrystalline wax Substances 0.000 claims description 4
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 235000010919 Copernicia prunifera Nutrition 0.000 claims description 2
- 244000180278 Copernicia prunifera Species 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 235000013871 bee wax Nutrition 0.000 claims description 2
- 239000012166 beeswax Substances 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims description 2
- 125000004185 ester group Chemical group 0.000 claims 1
- 241000894007 species Species 0.000 description 21
- 150000001298 alcohols Chemical class 0.000 description 20
- 239000003960 organic solvent Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000003995 emulsifying agent Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 235000019809 paraffin wax Nutrition 0.000 description 5
- 235000019271 petrolatum Nutrition 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N isopropyl alcohol Natural products CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920005692 JONCRYL® Polymers 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 241000364021 Tulsa Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000000981 basic dye Substances 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000005021 flexible packaging material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002398 hexadecan-1-ols Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
- C09D5/024—Emulsion paints including aerosols characterised by the additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/42—Ethers, e.g. polyglycol ethers of alcohols or phenols
Definitions
- This invention relates to a new and useful additive composition for water-based inks. More particularly, this invention relates to an aqueous dispersion for use as a water-based ink formulation additive for improving the performance of such inks in terms of gloss, adhesion, slip and the like.
- printing inks There are four (4) general classes of printing inks. There are letter press and lithographic inks, also known as oil inks or paste inks, and there are flexographic and rotogravure inks, also known as solvent or liquid inks. This invention is concerned with a particular class of flexographic and rotogravure inks which are water-based. Although these inks have certain characteristics in common with inks used in other printing processes, they form a distinct class because of the character of the printing processes in which they are used, their applications and their formulations. The main distinction of flexographic and rotogravure inks is that they are normally of low viscosity compared to other classes of printing inks.
- Flexographic and rotogravure inks have, in the past, been prepared by dispersing pigments or other colorants in volatile organic solvents such as alcohols, ketones and hydrocarbons. Due to environmental problems associated with the use of inks formulated with volatile organic solvents, water-based flexographic and rotogravure inks are becoming more important.
- flexographic printing a form of rotary letter press uses a flexible plate, such as rubber, and fluid inks.
- Flexographic printing was primarily used for paper bag printing but subsequently proved suitable for printing almost any kind of flexible packaging material.
- Flexographic inks generally consist of pigment dispersed in a vehicle made by dissolving one or more resins in a solvent, such as a volatile organic solvent or water.
- the water-based flexographic inks are widely used on paper and paper board.
- the vehicles for water-based inks are usually made from acrylic copolymers, acidic rosin esters, shellac, acidic styrene copolymers and various additives, such as waxes.
- water-based inks include good press stability and printability, absence of fire hazard and volatile organic solvent emissions, convenience and the economy of water as a diluent and for wash-up. Since the water-based inks do not use volatile organic solvents, their use is gaining favor over the use of organic solvent-based inks.
- Rotogravure inks normally comprise a pigment, a resin, a polymer or wax additive and a solvent. As in flexographic inks, water-based rotogravure inks are gaining favor over organic solvent-based inks because of environmental and worker hazard considerations.
- water-based inks are a mixture of water, resin, emulsifier or dispersing agent, a pigment and a polymer or wax additive.
- emulsifier or dispersing agent emulsifier or dispersing agent
- pigment emulsifier or dispersing agent
- polymer or wax additive emulsifier or dispersing agent
- U.S. Pat. No. 2,925,349 discloses a polish which utilizes alcohols having up to 20 carbon atoms as dispersants. Such alcohols may be oxyethylated.
- U.S. Pat. No. 3,533,811 discloses a water-based printing ink comprising a water-missible organic solvent, film forming resins which are soluble in the water-missible solvent, pigment, soluble protein, a polymer latex and a volatile base.
- the water-missible organic solvents which are used are lower aliphatic alcohols and the lower alkylene glycols and their esters and ethers.
- U.S. Pat. No. 3,563,910 discloses alkoxylated alcohols having up to 38 carbon atoms as emulsifiers for water/hydrocarbon mixtures.
- U.S. Pat. No. 3,884,707 discloses a water-based ink comprising a basic dye, water, an organic solvent and a resin.
- the organic solvents employed are, for example, ethylene glycol and its ethers.
- U.S. Pat. No. 4,686,260 discloses a process for preparing a polymer emulsion for a water-based ink which contains colloidally suspended polymer.
- the emulsifiers used are anionic, cationic or nonionic emulsifiers or mixtures thereof such as a variety of alcohols and ethylene oxide derivatives of long-chained carboxylic acids such as lauric, myristic, palmitic, oleic and steraic acids.
- analogous ethylene oxide condensates of long-chained alcohols such as octyl, decyl, stearyl and cetyl alcohols are used.
- an aqueous dispersion of certain high molecular weight alkoxylated primary alcohols, a finely divided mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000 and/or partially oxidized or similarly modified mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000 improves the print characteristics of water-based inks.
- the water-based inks to which the additive compositions of the present invention are added have improved adhesion, gloss, slip properties and other desirable characteristics.
- an object of this invention is to prepare a new and useful water-based ink additive composition containing water, the described alkoxylated alcohol, and the described aliphatic hydrocarbon and/or modified hydrocarbon.
- Such dispersions are imminently suitable as ink additive systems and can be used to significantly improve the performance of water-based inks.
- Another object of the invention is to prepare a water-based ink of improved performance, containing an ink additive composition which includes water, the described alkoxylated primary alcohol and the described hydrocarbon and/or modified hydrocarbon.
- the dispersants used in formulating the water-based ink additive systems of the invention are represented by alkoxylated alcohols of the formula: ##STR1## wherein R and R 1 individually represent hydrogen or the same or different lower alkyl groups of from 1 to about 10 carbon atoms; R 2 represents hydrogen or a methyl group; x represents a number of from about 8 to about 75 and preferably from about 19 to about 44, and indicates the average number of carbon atoms in the hydrocarbon portion of the chain; and n represents the average number of oxyalkylene groups present in the molecule and is a number of 2 to about 65 and preferably about 4-50.
- the average molecular weight of the alkoxylated alcohols may range from about 400 to about 8,000.
- the relative efficiency of the hydrophilic and lipophilic portions of the molecular can be controlled by the addition of varying amounts of ethylene oxide.
- the dispersants are prepared by alkoxylation of alcohols represented by the formula: ##STR2## wherein R, R 1 and x are defined above.
- Alkoxylating agents include ethylene oxide, propylene oxide and mixtures thereof.
- the starting materials can be readily alkoxylated with the just described alkylene oxides using typical base catalysts, such as potassium hydroxide, sodium hydroxide, sodium ethoxide, potassium t-butoxide, sodium hydride or sodium or potassium metals.
- the reaction is normally conducted under pressures of 0 to 60 psig and at temperatures of 212° to 356° F. (100° to 180° C.). Higher temperatures are normally avoided to minimize side reactions and color formation.
- the molecular weight of the starting alcohol may be chosen to have an average molecular weight of from about 270 to about 2,000.
- the primary linear polymeric alcohols to be alkoxylated are commercially available under the trade name UNILINTM alcohols from Petrolite Corporation, Specialty Polymers Group, Tulsa, Okla.
- aqueous dispersions of the present invention is a finely divided mostly linear saturated aliphatic hydrocarbon having a molecular weight of between about 300 and about 3,000.
- Such hydrocarbons include various polyethylenes.
- the polyethylene used in preparation of the dispersions of the present invention may be described as having a molecular weight of about 700-3,000.
- the polyethylene may be linear or may have a number of branch formations in its molecular structure.
- the polyethylenes When branched the polyethylenes preferably have one or two branches per molecule on the average and the branches may have 1 to 6 carbons, preferably C 1 -C 6 alkyl group.
- the aliphatic saturated hydrocarbon component of the dispersion of the present invention may comprise petroleum-derived waxes, such as paraffin and microcrystalline waxes.
- the paraffin waxes are mostly linear alkanes having about 20-36 carbon atoms per molecule on the average and a molecular weight of about 280-500 and may include C 18 -C 36 isoalkanes and cycloalkanes.
- the microcrystalline waxes have molecular weights of about 500-700 with somewhat more branching than the paraffin waxes.
- the aliphatic saturated hydrocarbon component of the dispersion of the present invention includes Fischer-Tropsch waxes.
- Such waxes are polymethylenes.
- Polymethylene wax production is based on the Fischer-Tropsch synthesis, which is basically the polymerization of carbon monoxide under high pressure to produce the wax.
- the polymethylene waxes useful herein preferably may have an average molecular weight of 600-1,000.
- hydrocarbons which may have been chemically modified without sacrificing the ink enhancing properties of the dispersion of the present invention.
- These include the partially oxidized polyethylenes, polymethylenes and the petroleum-derived waxes.
- the oxidized low molecular weight mostly linear hydrocarbons of a molecular weight of 300-3,000 have multiple functional groups, such as carboxylic acid, ketones, alcohols, esters, etc., distributed along their chains.
- the functional groups are the result of the oxidation of these hydrocarbons by an oxygen-containing gas at elevated temperatures, as is well known in the art.
- the functional groups of the oxidized hydrocarbons may be generally quantified by determination of an acid number which is the amount of potassium hydroxide in milligrams required to neutralize one gram of the oxidized polymer.
- the oxidized hydrocarbons will normally have an acid number in the range of from about 5 to about 25.
- the polyethylenes may be copolymers of ethylene with propylene, butylene, etc. and oxygen-containing units such as vinyl acetate, acrylic acid, etc., as long as the ink enhancing properties are retained.
- waxes such as beeswax, carnauba and candelila waxes.
- hydrocarbon and/or modified hydrocarbon components of the dispersion of the present invention be finely divided particles.
- these components should have an average particle size of less than 20 microns and preferably less than 15 microns and more than 1 micron.
- Such particle sizes may b e obtained by micronizing larger particles of the hydrocarbon and/or modified hydrocarbon component or may be attained by precipitation from solutions thereof. It is desirable that they have a broad particle size distribution which may best be achieved directly, for example, by precipitation, or may be achieved by blending micronized products of different particle sizes.
- One method of preparing of the aqueous dispersion of the present invention is by the following procedure:
- the final solids content of the dispersion which is desired is determined.
- the maximum solids content attainable will vary with the molecular weight and the amount of alkoxylation of the described dispersants.
- the amount of water needed is weighed into an agitated dispersion vessel and the amount of dispersant needed is added to a separate container.
- the dispersant is heated to 15°-20° F. (8°-11° C.) above its melting point which may range from about 180°-250° F. (82°-121° C.); and, at the same time, the water is heated to about 190° F. (88° C.).
- the dispersion is slowly stirred, cooling at the rate of about 2°-4° F. (1°-2° C.) per minute. When the temperature reaches about 140° F. (60° C.), the cooling rate may be increased or held constant until the desired pour temperature is reached. A stable dispersion results.
- the addition of a small amount of the dispersion of the present invention in inks notably improves the performance of such inks in regard to gloss, immediate adhesion, delayed adhesion, coefficient of friction (COF), wet rub, dry rub and water resistance.
- Gloss can be determined using conventional glossmeters
- adhesion can be determined by adhesive tape pull tests
- slip can be determined using conventional slide angle/slip and friction testers
- rub resistance can be determined using a Sutherland Rub Tester
- water resistance can be determined by a water drop test at 10, 30 and 60 second application intervals. These are standard tests employed by the industry.
- the preferred composition of the present invention is an aqueous dispersion having a solids content of at least 8.0% by weight. Normally, the solids content of the dispersion may be much higher in the range of at least 20% by weight and as high as 70% by weight.
- Dispersions useful for adding to water-based inks in accordance with the present invention may contain about 30-92% by weight water, about 2-30% by weight alkoxylated alcohol and about 1-60% by weight of hydrocarbon and/or modified hydrocarbon. The amount of hydrocarbon to modified hydrocarbon may range from 0 to 100% hydrocarbon.
- the dispersion will comprise about 40-80% by weight water, 2-20% by weight alcohol and 1-40% by weight of hydrocarbon and/or modified hydrocarbon.
- Water-based inks containing about 0.5 to about 10% by weight of the dispersion of the present invention have improved properties.
- the preferred amount of the dispersion in the inks is about 1-8% by weight.
- This example illustrates preparation of the alkoxylated alcohol component which serves as the dispersant of the composition of the present invention.
- a primary linear alcohol of the following formula was prepared by oxidation of a corresponding polyethylene precursor:
- This olefin-derived linear polymeric alcohol was ethoxylated in a conventional manner to provide an ethoxylated alcohol having a molecular weight of about 1,400 and 16 ethylene oxide units per mole of polymer on the average and melting about 224° F. (107° C.).
- This example illustrates the preparation of an aqueous dispersion of the ethoxylated alcohol prepared in Example I.
- composition 1 Using the formulating procedure as described above, a suitable quantity of water was heated to 190° F. (88° C.). In a separate vessel the alcohol was heated to a molten condition. Then, molten ethoxylated alcohol was added to the hot water under high shear conditions to yield a 25% by weight aqueous dispersion of the ethoxylated alcohol and cooled. This dispersion was designated Composition 1.
- This example illustrates the preparation of the micronized low molecular weight polyethylenes.
- Linear polyethylene of an average molecular weight of about 2,000 was used in the following examples.
- Oxidized polyethylene used in the following examples was prepared by air oxidizing a linear polyethylene of a molecular weight of 1,500 to an acid number of 18. The unoxidized polyethylene portion and the oxidized polyethylene portion separately were comminuted using conventional micronizing equipment. Portions of each polyethylene were comminuted to average sizes of 6 microns and 10 microns.
- This example illustrates the preparation of an aqueous dispersion containing the ethoxylated alcohol and a mixture of oxidized and unoxidized micronized low molecular weight linear polyethylenes.
- the unoxidized polyethylene had an average size of 10 microns and the oxidized polyethylene had an average size of 6 microns.
- the resulting composition was given the designation of Composition 2.
- an aqueous dispersion was prepared by mixing at a temperature of 250° F. (121° C.) under pressure water, the alkoxylated alcohol of Example I and unoxidized linear polyethylene wax having a molecular weight of 2,000 to produce a dispersion composed of 60% by weight water, 19% by weight alkoxylated alcohol and 21% by weight polyethylene. Upon cooling the polyethylene precipitated as finely divided particles having an average size of 2 microns. The resulting dispersion was designated Composition 3.
- This example illustrates the preparation of a water-based ink.
- This preparation was accomplished by weighing Joncryl 61-LV emulsifier and water into a mixing tub. Then, Foamburst 320CT antifoam, isopropanol and Neocryl A-1054 acrylic resin dispersion were added to the tub and mixed thoroughly with the other ingredients therein. Finally, the Flexiverse BCD5103 blue pigment was added to the tub and mixed thoroughly with the ingredients therein to form a well dispersed ink composition.
- compositions of the present invention were applied to various substrates at different levels of the micronized polyethylene polymers of low molecular weight of the present invention and were tested for gloss, 90° degree delayed adhesion, static coefficient of friction (slide angle) and dynamic coefficient of friction (slide angle) using a four color, flexographic press.
- Composition 5 was an aqueous dispersion of Example II containing a surfactant coated micronized branched polyethylene of about 700 molecular weight.
- the speed of the printer was held constant at 200 feet/minute and each run was about a minute long.
- the wet temperature on the drier was held at 170° F. (77° C.) for all the runs.
- This example shows that the water-based printing aid compositions of the present invention are useful in the formulation of water-based inks.
- compositions of the present invention wherein different combinations of unoxidized polyethylene and oxidized polyethylene in different finely divided sizes were employed.
- the first species of polyethylene was a mixture of 50% unoxidized polyethylene of 2,000 molecular weight and a particle size of 6 microns and 50% unoxidized polyethylene of 2,000 molecular weight and a particle size of 10 microns.
- the second species of polyethylene was a mixture of 50% by weight oxidized polyethylene of 1,500 molecular weight and a particle size of 6 microns and 50% by weight of oxidized polyethylene of 1,500 molecular weight and a particle size of 10 microns.
- the third species of polyethylene was a mixture of 50% by weight of unoxidized polyethylene of 2,000 molecular weight and a particle size of 6 microns and 50% by weight oxidized polyethylene of 1,500 molecular weight and a particle size of 10 microns.
- the fourth species of polyethylene was a mixture of 50% by weight of oxidized polyethylene of 1,500 molecular weight and a particle size of 6 microns and 50% by weight of unoxidized polyethylene of 2,000 molecular weight and a particle size of 10 microns.
- the sixth species of polyethylene was a mixture of 75% by weight of oxidized polyethylene of 1,500 molecular weight and a particle size of 6 microns and 25% by weight of unoxidized polyethylene of 2,000 molecular weight and a particle size of 10 microns.
- compositions of the various species of polyethylene mixtures and the ethoxylated alcohol of the present example were added to a standard water-based blue ink in an amount of 3.0% by weight.
- the resulting ink composition was applied to aluminum foil and polypropylene film and tested for various properties including gloss, slip, rub and adhesion. The results of such tests are summarized in Tables 9 and 10.
- a second ethoxylated alcohol having a molecular weight of about 865 and an ethylene oxide content of 10 moles per mole of polymer was prepared.
- an aqueous dispersion containing a mixture of paraffin wax and essentially linear unmodified polyethylene was prepared to form a 50% solids composition.
- the dispersion was added to printing ink at an additive level of 3.0% by weight. The resulting ink when applied to various surfaces showed improved characteristics.
- the aqueous dispersions prepared in accordance with this example improve such inks in terms of gloss maintenance and rub resistance without sacrifice of adhesion of the inks to a substrate, of slip of the inks from the substrate and of water spot resistance of inks applied to a variety of substrates.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesive Tapes (AREA)
- Paints Or Removers (AREA)
- Paper (AREA)
Abstract
An aqueous dispersion useful in formulating water based printing inks is provided. The dispersion contains water, an alkoxylated primary linear polymeric alcohol dispersant and a finely divided mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000 and/or a finely divided chemically modified mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000.
Description
1. Background of the Invention
This invention relates to a new and useful additive composition for water-based inks. More particularly, this invention relates to an aqueous dispersion for use as a water-based ink formulation additive for improving the performance of such inks in terms of gloss, adhesion, slip and the like.
There are four (4) general classes of printing inks. There are letter press and lithographic inks, also known as oil inks or paste inks, and there are flexographic and rotogravure inks, also known as solvent or liquid inks. This invention is concerned with a particular class of flexographic and rotogravure inks which are water-based. Although these inks have certain characteristics in common with inks used in other printing processes, they form a distinct class because of the character of the printing processes in which they are used, their applications and their formulations. The main distinction of flexographic and rotogravure inks is that they are normally of low viscosity compared to other classes of printing inks.
Flexographic and rotogravure inks have, in the past, been prepared by dispersing pigments or other colorants in volatile organic solvents such as alcohols, ketones and hydrocarbons. Due to environmental problems associated with the use of inks formulated with volatile organic solvents, water-based flexographic and rotogravure inks are becoming more important.
In flexographic printing, a form of rotary letter press uses a flexible plate, such as rubber, and fluid inks. Originally, flexographic printing was primarily used for paper bag printing but subsequently proved suitable for printing almost any kind of flexible packaging material. Flexographic inks generally consist of pigment dispersed in a vehicle made by dissolving one or more resins in a solvent, such as a volatile organic solvent or water. The water-based flexographic inks are widely used on paper and paper board. The vehicles for water-based inks are usually made from acrylic copolymers, acidic rosin esters, shellac, acidic styrene copolymers and various additives, such as waxes. The advantages of water-based inks include good press stability and printability, absence of fire hazard and volatile organic solvent emissions, convenience and the economy of water as a diluent and for wash-up. Since the water-based inks do not use volatile organic solvents, their use is gaining favor over the use of organic solvent-based inks.
Rotogravure inks normally comprise a pigment, a resin, a polymer or wax additive and a solvent. As in flexographic inks, water-based rotogravure inks are gaining favor over organic solvent-based inks because of environmental and worker hazard considerations.
In general, water-based inks are a mixture of water, resin, emulsifier or dispersing agent, a pigment and a polymer or wax additive. There exists a need to improve water-based inks in terms of gloss, maintenance, rub resistance, adhesion, slip, water resistance and other desirable properties.
2. Prior Art
U.S. Pat. No. 2,925,349 discloses a polish which utilizes alcohols having up to 20 carbon atoms as dispersants. Such alcohols may be oxyethylated.
U.S. Pat. No. 3,533,811 discloses a water-based printing ink comprising a water-missible organic solvent, film forming resins which are soluble in the water-missible solvent, pigment, soluble protein, a polymer latex and a volatile base. The water-missible organic solvents which are used are lower aliphatic alcohols and the lower alkylene glycols and their esters and ethers.
U.S. Pat. No. 3,563,910 discloses alkoxylated alcohols having up to 38 carbon atoms as emulsifiers for water/hydrocarbon mixtures.
U.S. Pat. No. 3,884,707 discloses a water-based ink comprising a basic dye, water, an organic solvent and a resin. The organic solvents employed are, for example, ethylene glycol and its ethers.
U.S. Pat. No. 4,686,260 discloses a process for preparing a polymer emulsion for a water-based ink which contains colloidally suspended polymer. The emulsifiers used are anionic, cationic or nonionic emulsifiers or mixtures thereof such as a variety of alcohols and ethylene oxide derivatives of long-chained carboxylic acids such as lauric, myristic, palmitic, oleic and steraic acids. Also, analogous ethylene oxide condensates of long-chained alcohols, such as octyl, decyl, stearyl and cetyl alcohols are used.
In accordance with the present invention, it has been found that an aqueous dispersion of certain high molecular weight alkoxylated primary alcohols, a finely divided mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000 and/or partially oxidized or similarly modified mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000 improves the print characteristics of water-based inks. The water-based inks to which the additive compositions of the present invention are added have improved adhesion, gloss, slip properties and other desirable characteristics.
Accordingly, an object of this invention is to prepare a new and useful water-based ink additive composition containing water, the described alkoxylated alcohol, and the described aliphatic hydrocarbon and/or modified hydrocarbon. Such dispersions are imminently suitable as ink additive systems and can be used to significantly improve the performance of water-based inks.
Another object of the invention is to prepare a water-based ink of improved performance, containing an ink additive composition which includes water, the described alkoxylated primary alcohol and the described hydrocarbon and/or modified hydrocarbon.
It has been found that aqueous dispersions of a high molecular weight alkoxyated alcohol having an average chain length in the hydrocarbon portion of the alcohol of from about 18 to about 150 carbon atoms, preferably from about 40 to about 90 carbon atoms, especially about 50 carbon atoms, and a finely divided mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000 and/or partially oxidized or similarly modified mostly linear aliphatic hydrocarbon having a molecular weight of about 300-3,000.
The dispersants used in formulating the water-based ink additive systems of the invention are represented by alkoxylated alcohols of the formula: ##STR1## wherein R and R1 individually represent hydrogen or the same or different lower alkyl groups of from 1 to about 10 carbon atoms; R2 represents hydrogen or a methyl group; x represents a number of from about 8 to about 75 and preferably from about 19 to about 44, and indicates the average number of carbon atoms in the hydrocarbon portion of the chain; and n represents the average number of oxyalkylene groups present in the molecule and is a number of 2 to about 65 and preferably about 4-50. The average molecular weight of the alkoxylated alcohols may range from about 400 to about 8,000. The relative efficiency of the hydrophilic and lipophilic portions of the molecular can be controlled by the addition of varying amounts of ethylene oxide.
The dispersants are prepared by alkoxylation of alcohols represented by the formula: ##STR2## wherein R, R1 and x are defined above. Alkoxylating agents include ethylene oxide, propylene oxide and mixtures thereof. The starting materials can be readily alkoxylated with the just described alkylene oxides using typical base catalysts, such as potassium hydroxide, sodium hydroxide, sodium ethoxide, potassium t-butoxide, sodium hydride or sodium or potassium metals. The reaction is normally conducted under pressures of 0 to 60 psig and at temperatures of 212° to 356° F. (100° to 180° C.). Higher temperatures are normally avoided to minimize side reactions and color formation.
By varying the molecular weight of the starting alcohol and the amount of alkoxylation, a variety of compounds of varying molecular weights can be prepared. Thus, the molecular weight of the starting alcohol may be chosen to have an average molecular weight of from about 270 to about 2,000.
The primary linear polymeric alcohols to be alkoxylated are commercially available under the trade name UNILIN™ alcohols from Petrolite Corporation, Specialty Polymers Group, Tulsa, Okla.
Also included in the aqueous dispersions of the present invention is a finely divided mostly linear saturated aliphatic hydrocarbon having a molecular weight of between about 300 and about 3,000.
Such hydrocarbons include various polyethylenes. The polyethylene used in preparation of the dispersions of the present invention may be described as having a molecular weight of about 700-3,000. The polyethylene may be linear or may have a number of branch formations in its molecular structure. When branched the polyethylenes preferably have one or two branches per molecule on the average and the branches may have 1 to 6 carbons, preferably C1 -C6 alkyl group.
In addition to the polyethylenes, the aliphatic saturated hydrocarbon component of the dispersion of the present invention may comprise petroleum-derived waxes, such as paraffin and microcrystalline waxes. The paraffin waxes are mostly linear alkanes having about 20-36 carbon atoms per molecule on the average and a molecular weight of about 280-500 and may include C18 -C36 isoalkanes and cycloalkanes. The microcrystalline waxes have molecular weights of about 500-700 with somewhat more branching than the paraffin waxes.
Furthermore, the aliphatic saturated hydrocarbon component of the dispersion of the present invention includes Fischer-Tropsch waxes. Such waxes are polymethylenes. Polymethylene wax production is based on the Fischer-Tropsch synthesis, which is basically the polymerization of carbon monoxide under high pressure to produce the wax. The polymethylene waxes useful herein preferably may have an average molecular weight of 600-1,000.
Also contemplated in the present invention are the above described hydrocarbons which may have been chemically modified without sacrificing the ink enhancing properties of the dispersion of the present invention. These include the partially oxidized polyethylenes, polymethylenes and the petroleum-derived waxes. The oxidized low molecular weight mostly linear hydrocarbons of a molecular weight of 300-3,000 have multiple functional groups, such as carboxylic acid, ketones, alcohols, esters, etc., distributed along their chains. The functional groups are the result of the oxidation of these hydrocarbons by an oxygen-containing gas at elevated temperatures, as is well known in the art.
The functional groups of the oxidized hydrocarbons may be generally quantified by determination of an acid number which is the amount of potassium hydroxide in milligrams required to neutralize one gram of the oxidized polymer. The oxidized hydrocarbons will normally have an acid number in the range of from about 5 to about 25.
Also, the polyethylenes, besides being homopolymers, may be copolymers of ethylene with propylene, butylene, etc. and oxygen-containing units such as vinyl acetate, acrylic acid, etc., as long as the ink enhancing properties are retained.
Other closely related material that can be used include the natural waxes, such as beeswax, carnauba and candelila waxes.
It is important that the hydrocarbon and/or modified hydrocarbon components of the dispersion of the present invention be finely divided particles. For best results, these components should have an average particle size of less than 20 microns and preferably less than 15 microns and more than 1 micron. Such particle sizes may b e obtained by micronizing larger particles of the hydrocarbon and/or modified hydrocarbon component or may be attained by precipitation from solutions thereof. It is desirable that they have a broad particle size distribution which may best be achieved directly, for example, by precipitation, or may be achieved by blending micronized products of different particle sizes.
One method of preparing of the aqueous dispersion of the present invention is by the following procedure:
1. The final solids content of the dispersion which is desired is determined. The maximum solids content attainable will vary with the molecular weight and the amount of alkoxylation of the described dispersants.
2. The amount of water needed is weighed into an agitated dispersion vessel and the amount of dispersant needed is added to a separate container.
3. The dispersant is heated to 15°-20° F. (8°-11° C.) above its melting point which may range from about 180°-250° F. (82°-121° C.); and, at the same time, the water is heated to about 190° F. (88° C.).
4. When both components are heated to the appropriate temperatures, the dispersant is slowly poured into the heated water which is at the same time vigorously stirred.
5. When all of the dispersant has been added to the water, the heat source is removed and stirring is continued for 2 to 3 additional minutes.
6. The dispersion is slowly stirred, cooling at the rate of about 2°-4° F. (1°-2° C.) per minute. When the temperature reaches about 140° F. (60° C.), the cooling rate may be increased or held constant until the desired pour temperature is reached. A stable dispersion results.
7. The finely divided hydrocarbon and/or modified hydrocarbons is thereafter incorporated in the resulting dispersion.
The addition of a small amount of the dispersion of the present invention in inks notably improves the performance of such inks in regard to gloss, immediate adhesion, delayed adhesion, coefficient of friction (COF), wet rub, dry rub and water resistance. Gloss can be determined using conventional glossmeters, adhesion can be determined by adhesive tape pull tests, slip can be determined using conventional slide angle/slip and friction testers, rub resistance can be determined using a Sutherland Rub Tester and water resistance can be determined by a water drop test at 10, 30 and 60 second application intervals. These are standard tests employed by the industry.
The preferred composition of the present invention is an aqueous dispersion having a solids content of at least 8.0% by weight. Normally, the solids content of the dispersion may be much higher in the range of at least 20% by weight and as high as 70% by weight. Dispersions useful for adding to water-based inks in accordance with the present invention may contain about 30-92% by weight water, about 2-30% by weight alkoxylated alcohol and about 1-60% by weight of hydrocarbon and/or modified hydrocarbon. The amount of hydrocarbon to modified hydrocarbon may range from 0 to 100% hydrocarbon. Preferably, the dispersion will comprise about 40-80% by weight water, 2-20% by weight alcohol and 1-40% by weight of hydrocarbon and/or modified hydrocarbon.
It has been found that excellent results are obtained when a mixture of oxidized and unoxidized polyethylenes as the hydrocarbon mixture are used. The most preferred composition is 50-85% water, 2-15% alkoxylated alcohol and 10-35% of oxidized plus unoxidized polyethylene. It is preferred for the oxidized polyethylene portion of the mixture to be about 50-95% and the unoxidized polyethylene portion of the mixture to be about 5-50%. Excellent results have been obtained where the composition contains 70-80% oxidized polyethylene and 20-30% unoxidized polyethylene.
Water-based inks containing about 0.5 to about 10% by weight of the dispersion of the present invention have improved properties. The preferred amount of the dispersion in the inks is about 1-8% by weight.
In the following examples, all percentages are on a weight/weight basis unless otherwise indicated.
The following examples will illustrate the practice of the present invention in its preferred embodiments. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification and practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims which follow.
This example illustrates preparation of the alkoxylated alcohol component which serves as the dispersant of the composition of the present invention.
A primary linear alcohol of the following formula was prepared by oxidation of a corresponding polyethylene precursor:
CH.sub.3 (CH.sub.2 CH.sub.2).sub.x CH.sub.2 OH
wherein x about 23.
This olefin-derived linear polymeric alcohol was ethoxylated in a conventional manner to provide an ethoxylated alcohol having a molecular weight of about 1,400 and 16 ethylene oxide units per mole of polymer on the average and melting about 224° F. (107° C.).
This example illustrates the preparation of an aqueous dispersion of the ethoxylated alcohol prepared in Example I.
Using the formulating procedure as described above, a suitable quantity of water was heated to 190° F. (88° C.). In a separate vessel the alcohol was heated to a molten condition. Then, molten ethoxylated alcohol was added to the hot water under high shear conditions to yield a 25% by weight aqueous dispersion of the ethoxylated alcohol and cooled. This dispersion was designated Composition 1.
This example illustrates the preparation of the micronized low molecular weight polyethylenes.
Linear polyethylene of an average molecular weight of about 2,000 was used in the following examples. Oxidized polyethylene used in the following examples was prepared by air oxidizing a linear polyethylene of a molecular weight of 1,500 to an acid number of 18. The unoxidized polyethylene portion and the oxidized polyethylene portion separately were comminuted using conventional micronizing equipment. Portions of each polyethylene were comminuted to average sizes of 6 microns and 10 microns.
This example illustrates the preparation of an aqueous dispersion containing the ethoxylated alcohol and a mixture of oxidized and unoxidized micronized low molecular weight linear polyethylenes.
To 100 parts by weight of the aqueous dispersion prepared in accordance with Example II, 1.9 parts by weight of the oxidized polyethylene (MW=1,500) and 0.6 parts by weight of the unoxidized polyethylene (MW=2,000) were added and vigorously blended into the dispersion. The unoxidized polyethylene had an average size of 10 microns and the oxidized polyethylene had an average size of 6 microns. The resulting composition was given the designation of Composition 2.
In this example, an aqueous dispersion was prepared by mixing at a temperature of 250° F. (121° C.) under pressure water, the alkoxylated alcohol of Example I and unoxidized linear polyethylene wax having a molecular weight of 2,000 to produce a dispersion composed of 60% by weight water, 19% by weight alkoxylated alcohol and 21% by weight polyethylene. Upon cooling the polyethylene precipitated as finely divided particles having an average size of 2 microns. The resulting dispersion was designated Composition 3.
In this example, a dispersion of 60% water and 40% solids was prepared. Of the solids 80% was composed of the alkoxylated alcohol of Example I and 10% by weight of oxidized polyethylene (MW=1,500) having a 6 micron size and 10% by weight of unoxidized polyethylene (MW=2,000) having a 10 micron size was prepared. The resulting dispersion was designated Composition 4.
This example illustrates the preparation of a water-based ink.
The following ink composition was prepared:
______________________________________ Ingredient Weight % Supplier ______________________________________ Joncryl 61-LV 13.0 S. C. Johnson Water 2.5 -- Isopropanol (95%) 4.5 -- Foamburst 320 CT 1.0 Ross Chemical Neocryl A-1054 55.0 ICI Resins Flexiverse BCD5103 24.0 Sun Chemical ______________________________________
This preparation was accomplished by weighing Joncryl 61-LV emulsifier and water into a mixing tub. Then, Foamburst 320CT antifoam, isopropanol and Neocryl A-1054 acrylic resin dispersion were added to the tub and mixed thoroughly with the other ingredients therein. Finally, the Flexiverse BCD5103 blue pigment was added to the tub and mixed thoroughly with the ingredients therein to form a well dispersed ink composition.
Water-based blue surface inks containing compositions of the present invention were applied to various substrates at different levels of the micronized polyethylene polymers of low molecular weight of the present invention and were tested for gloss, 90° degree delayed adhesion, static coefficient of friction (slide angle) and dynamic coefficient of friction (slide angle) using a four color, flexographic press. Composition 5 was an aqueous dispersion of Example II containing a surfactant coated micronized branched polyethylene of about 700 molecular weight.
Higher gloss readings and higher adhesions are desirable properties and lower coefficients of friction are also desirable properties in the following table.
TABLE 1 ______________________________________ Gloss on Low Density Polyethylene Substrate Ink Ink Glossmeter Additive Additive % Reading ______________________________________ Composition 2 3 77 Composition 2 6 76 Composition 3 1.25 80 Composition 3 3.75 74 Composition 5 5 80 ______________________________________
TABLE 2 ______________________________________ Gloss on Polypropylene Film Ink Ink Glossmeter Additive Additive % Reading ______________________________________ Composition 2 3 87 Composition 2 6 79 Composition 3 1.25 86 Composition 3 3.75 68 Composition 5 5 80 ______________________________________
TABLE 3 ______________________________________ 90° Delayed Adhesion on Low Density Polyethylene Substrate Ink Ink Additive Additive % Rating ______________________________________ Composition 2 3 10.0 Composition 2 6 10.0 Composition 3 1.25 9.0 Composition 3 3.75 7.5 Composition 5 5 8.0 ______________________________________
TABLE 4 ______________________________________ 90° Delayed Adhesion on Polypropylene Film Ink Ink Additive Additive % Rating ______________________________________ Composition 2 3 1.0 Composition 2 6 10.0 Composition 3 1.25 4.5 Composition 3 3.75 8.0 Composition 5 5 6.5 ______________________________________
TABLE 5 ______________________________________ Static COF ® on Low Density Polyethylene Substrate Ink Ink Additive Additive % COF ______________________________________ Composition 2 3 0.43 Composition 2 6 0.49 Composition 3 1.25 0.48 Composition 3 3.75 0.47 Composition 5 5 0.47 ______________________________________
TABLE 6 ______________________________________ Static COF on Polypropylene Film Ink Ink Additive Additive % COF ______________________________________ Composition 2 3 0.58 Composition 2 6 0.57 Composition 3 1.25 0.59 Composition 3 3.75 0.50 Composition 5 5 0.47 ______________________________________ *Coefficient of Friction as measured using slide angle test employing Testing Machines, Inc., Model No. 3225-00.
TABLE 7 ______________________________________ Dynamic COF on Low Density Polyethylene Substrate Ink Ink Additive Additive % COF ______________________________________ Composition 2 3 0.31 Composition 2 6 0.34 Composition 3 1.25 0.32 Composition 3 3.75 0.37 Composition 5 5 0.34 ______________________________________
TABLE 8 ______________________________________ Static COF on Polypropylene Film Ink Ink Additive Additive % COF ______________________________________ Composition 2 3 0.38 Composition 2 6 0.33 Composition 3 1.25 0.38 Composition 3 3.75 0.26 Composition 5 5 0.31 ______________________________________
In this example, the speed of the printer was held constant at 200 feet/minute and each run was about a minute long. The wet temperature on the drier was held at 170° F. (77° C.) for all the runs. This example shows that the water-based printing aid compositions of the present invention are useful in the formulation of water-based inks.
This example illustrates the results of using compositions of the present invention wherein different combinations of unoxidized polyethylene and oxidized polyethylene in different finely divided sizes were employed.
In each of the following compositions various linear polyethylene species were added to an aqueous dispersion prepared in accordance with Example II. The total amount of added polyethylene was 2.5% by weight of the resulting composition.
The first species of polyethylene was a mixture of 50% unoxidized polyethylene of 2,000 molecular weight and a particle size of 6 microns and 50% unoxidized polyethylene of 2,000 molecular weight and a particle size of 10 microns.
The second species of polyethylene was a mixture of 50% by weight oxidized polyethylene of 1,500 molecular weight and a particle size of 6 microns and 50% by weight of oxidized polyethylene of 1,500 molecular weight and a particle size of 10 microns.
The third species of polyethylene was a mixture of 50% by weight of unoxidized polyethylene of 2,000 molecular weight and a particle size of 6 microns and 50% by weight oxidized polyethylene of 1,500 molecular weight and a particle size of 10 microns.
The fourth species of polyethylene was a mixture of 50% by weight of oxidized polyethylene of 1,500 molecular weight and a particle size of 6 microns and 50% by weight of unoxidized polyethylene of 2,000 molecular weight and a particle size of 10 microns.
The fifth species of polyethylene was a mixture of 50% by weight of unoxidized polyethylene (MW=700; 6 micron size) and 50% polyethylene added to as a 30% solids aqueous dispersion by weight of a commercially available aqueous dispersion of polyethylene (30% solids). This fifth species was not made in accordance with Example II mentioned above; it is a stand alone product.
The sixth species of polyethylene was a mixture of 75% by weight of oxidized polyethylene of 1,500 molecular weight and a particle size of 6 microns and 25% by weight of unoxidized polyethylene of 2,000 molecular weight and a particle size of 10 microns.
The compositions of the various species of polyethylene mixtures and the ethoxylated alcohol of the present example were added to a standard water-based blue ink in an amount of 3.0% by weight. The resulting ink composition was applied to aluminum foil and polypropylene film and tested for various properties including gloss, slip, rub and adhesion. The results of such tests are summarized in Tables 9 and 10.
TABLE 9 ______________________________________ Comparison on Aluminum Foil Adhesion Composition Gloss Slip Rub Ranking ______________________________________ PE Species 1 77 .41/.21 .09 2 PE Species 2 72 .42/.19 .07 6 PE Species 3 73 .36/.20 .07 2 PE Species 4 73 .38/.30 .07 2 PE Species 5 71 .44/.23 .08 5 PE Species 6 79 .42/.18 .05 1 ______________________________________
TABLE 10 ______________________________________ Comparison on Polypropylene Film Adhesion Composition Gloss Slip Rub Ranking ______________________________________ PE Species 1 71 .44/.23 .08 2 PE Species 2 68 .39/.20 .06 6 PE Species 3 66 .45/.20 .07 2 PE Species 4 68 .43/.20 .07 2 PE Species 5 62 .48/.21 .07 5 PE Species 6 65 .39/.15 .06 1 ______________________________________
From the Tables 9 and 10, it is noted that the combination of the use of oxidized polyethylene of 6 micron size and unoxidized polyethylene of 10 micron size when added to the aqueous dispersion of ethoxylated alcohol provides markedly better gloss, slip and adhesion in water-based inks as compared to the use of the standard additive when added to the same dispersion and slightly better properties over other tested combinations of oxidized and unoxidized polyethylenes.
A second ethoxylated alcohol having a molecular weight of about 865 and an ethylene oxide content of 10 moles per mole of polymer was prepared.
In this example, an aqueous dispersion containing a mixture of paraffin wax and essentially linear unmodified polyethylene was prepared to form a 50% solids composition. Of the solids 10% by weight was composed of the alkoxylated alcohol of Example X and 90% by weight of paraffin wax (MP=147° F. (63.9° C.)). The dispersion was added to printing ink at an additive level of 3.0% by weight. The resulting ink when applied to various surfaces showed improved characteristics.
When used in small amounts by weight of the ink composition in water-based inks, the aqueous dispersions prepared in accordance with this example improve such inks in terms of gloss maintenance and rub resistance without sacrifice of adhesion of the inks to a substrate, of slip of the inks from the substrate and of water spot resistance of inks applied to a variety of substrates.
Claims (27)
1. .[.A water based ink containing a pigment and an effective amount of a formulation aid comprising in an.]. .Iadd.An .Iaddend.aqueous dispersion .Iadd.comprising.Iaddend.:
(a) water;
(b) a dispersant represented by the formula: ##STR3## wherein R and R1 are independently selected from the group consisting of hydrogen and C1 -C10 alkyl; R2 is selected from the group consisting of hydrogen and methyl and x is about 8 to about 75 and n is about 2 to about 65; and
(c) a finely divided mostly linear aliphatic hydrocarbon .[.and/or.]. or modified hydrocarbon .Iadd.or mixtures thereof .Iaddend.having a molecular weight of from about 300-3,000 .[.and an average particle size of less than about 20 microns..]..Iadd.selected from the group consisting of (i) a copolymer of ethylene and either propylene, butylene, vinyl acetate or acrylic acid; (ii) Fischer-Tropsch waxes; (iii) natural wax; (iv) petroleum-derived waxes; and (v) partially oxidized polyethylenes, polymethylenes and petroleum-derived waxes. .Iaddend.
2. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim 1 .[.wherein the dispersion.]. .Iadd.which .Iaddend.contains:
(a) about 20-92% by weight of water; (b) about 2-40% by weight of .Iadd.said .Iaddend.dispersant; and (c) about 1-60% by weight of said mostly linear aliphatic .Iadd.and/or modified .Iaddend.hydrocarbon.
3. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim 2 wherein said mostly linear aliphatic hydrocarbon and/or modified hydrocarbon is a .[.mixture of unoxidized polyethylene and.]. .Iadd.partially .Iaddend.oxidized polyethylene, .Iadd.polymethylene or petroleum-derived wax.Iaddend..
4. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim .[.3.]. .Iadd.28 .Iaddend.wherein the oxidized polyethylene comprises about 55-95% by weight of the .Iadd.hydrocarbon .Iaddend.mixture.
5. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim 4 wherein the oxidized polyethylene has an acid number of at least about 5.
6. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim .[.2.]. .Iadd.1 .Iaddend.wherein the hydrocarbon .[.contains.]. .Iadd.is .Iaddend.a petroleum-derived wax.
7. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim 2 wherein the hydrocarbon .[.contains.]. .Iadd.is .Iaddend.a polymethylene.
8. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim .[.2.]. .Iadd.6 .Iaddend.wherein the .[.hydrocarbon.]. .Iadd.petroleum-derived wax .Iaddend.is .[.a mixture of.]. paraffin wax .[.and polyethylene.]..
9. .[.A water based pigmented ink containing an effective amount of a formulation aid comprising in an.]. .Iadd.An.Iaddend.aqueous dispersion .Iadd.which when added to an ink improves adhesion, gloss, and slip properties of the ink, which comprises.Iaddend.:
(a) water;
(b) a dispersant represented by the formula: ##STR4## wherein R and R1 are independently selected from the group consisting of hydrogen and C1 -C10 alkyl; R2 is selected from the group consisting of hydrogen and methyl and x is about 8-75 and n averages .Badd..[.4-50.]..Baddend. .Iadd.2-65.Iaddend.; and
(c) a mixture of:
(1) a finely divided unoxidized polyethylene of a molecular weight of about .Badd..[.700.]..Baddend. .Iadd.300 .Iaddend.to about 3,000;
(2) a finely divided oxidized polyethylene of a molecular weight of about .Badd..[.700.]..Baddend. .Iadd.300 .Iaddend.to about 3,000.
10. .[.A water-based pigmented ink containing an effective amount of a formulation aid comprising in an.]. .Iadd.An .Iaddend.aqueous dispersion .Iadd.which when added to an ink improves adhesion, gloss, and slip properties of the ink, which comprises.Iaddend.:
(a) about 30-92% by weight of water;
(b) about 2-40% by weight of a dispersant represented by the formula: ##STR5## wherein R and R1 are independently selected from the group consisting of hydrogen and C1 -C10 alkyl; R2 is selected from the group consisting of hydrogen and methyl and x is about 8-75 and n averages about .Badd..[.4-5.]..Baddend. .Iadd.2-65.Iaddend.; and
(c) about 1-60% by weight of a mixture of:
(1) a finely divided unoxidized polyethylene o a molecular weight of about .Badd..[.700.]..Baddend. .Iadd.300 .Iaddend.to about 3,000; and
(2) a finely divided oxidized polyethylene of a molecular weight of about .Badd..[.700.]..Baddend..Iadd.300 .Iaddend.to about 3,000.
11. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim 10 wherein the oxidized polyethylene comprises about 55-95% by weight of the mixture.
12. The .[.ink.]. .Iadd.dispersion .Iaddend.of claim 11 wherein the oxidized polyethylene has an acid number of at least about 5.
13. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim .[.12 containing about 0.5 to about 10% by weight of the formulation aid.]. .Iadd.1.Iaddend..
14. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim .[.3 containing about 0.5 to about 10% by weight of the formulation aid.]. .Iadd.28.Iaddend..
15. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim 4 .[.containing about 0.5 to about 10% by weight of the formulation aid.]..
16. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim .[.5 containing about 0.5 to about 10% by weight of the formulation aid.]. .Iadd.23.Iaddend..
17. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim .[.6 containing about 0.5 to about 10% by weight of the formulation aid.]. .Iadd.31.Iaddend..
18. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim .[.7 containing about 0.5 to about 10% by weight of the formulation aid.]. .Iadd.30.Iaddend..
19. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim 8 .Iadd.containing about 0.5 to about 10% by weight of the formulation aid.]..Iaddend..
20. A water-based ink .Iadd.which contains the dispersion of .Iaddend.claim 9 .[.containing about 0.5 to about 10% by weight of the formulation aid.]..
21. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim 10 .[.containing about 0.5 to about 10% by weight of the formulation aid.]..
22. A water-based ink .Iadd.which contains the dispersion .Iaddend.of claim 11 .[.containing about 0.5 to about 10% by weight of the formulation aid.].. .Iadd.23. The dispersion of claim 6 wherein the petroleum-derived
wax is a microcrystalline wax. .Iaddend..Iadd. 24. The dispersion of claim 8 further containing polyethylene. .Iaddend..Iadd.25. The dispersion of claim 8 wherein the paraffin wax has between about 20 to about 36 carbon atoms. .Iaddend. .Iadd.26. The dispersion of claim 8 wherein the paraffin wax has a molecular weight between about 280 to about 500. .Iaddend. .Iadd.27. The dispersion of claim 23 wherein the microcrystalline wax has
a molecular weight between about 500 to about 700. .Iaddend. .Iadd.28. The dispersion of claim 3 wherein the hydrocarbon further contains
unoxidized polyethylene. .Iaddend. .Iadd.29. The dispersion of claim 3 wherein the hydrocarbon contains at least one carboxylic acid, ketone,
alcohol or ester group. .Iaddend. .Iadd.30. The dispersion of claim 1 wherein the hydrocarbon is a natural wax. .Iaddend. .Iadd.31. The dispersion of claim 30 wherein the natural wax is beeswax, carnauba or candelila wax. .Iaddend. .Iadd.32. The dispersion of claim 1 wherein the hydrocarbon has an average particle size less than 20 microns. .Iaddend.
.Iadd.33. The dispersion of claim 29 wherein the average particle size of the hydrocarbon is between about 1 to about 15 microns. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/851,430 USRE34792E (en) | 1988-11-04 | 1992-03-13 | Additive composition for water-based inks |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/267,064 US4908063A (en) | 1988-11-04 | 1988-11-04 | Additive composition for water-based inks |
US07/851,430 USRE34792E (en) | 1988-11-04 | 1992-03-13 | Additive composition for water-based inks |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/267,064 Reissue US4908063A (en) | 1988-11-04 | 1988-11-04 | Additive composition for water-based inks |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE34792E true USRE34792E (en) | 1994-11-22 |
Family
ID=23017173
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/267,064 Ceased US4908063A (en) | 1988-11-04 | 1988-11-04 | Additive composition for water-based inks |
US07/849,292 Expired - Fee Related USRE34329E (en) | 1988-11-04 | 1992-03-10 | Overprint aqueous varnish |
US07/851,430 Expired - Lifetime USRE34792E (en) | 1988-11-04 | 1992-03-13 | Additive composition for water-based inks |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/267,064 Ceased US4908063A (en) | 1988-11-04 | 1988-11-04 | Additive composition for water-based inks |
US07/849,292 Expired - Fee Related USRE34329E (en) | 1988-11-04 | 1992-03-10 | Overprint aqueous varnish |
Country Status (3)
Country | Link |
---|---|
US (3) | US4908063A (en) |
EP (1) | EP0367627A3 (en) |
JP (1) | JPH02169797A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6545064B1 (en) | 1999-11-24 | 2003-04-08 | Avery Dennison Corporation | Coating composition comprising ethoxylated diacrylates |
US20080305313A1 (en) * | 2004-09-15 | 2008-12-11 | Crane & Co., Inc. | Security Device and Novel Anti-Counterfeit Product Employing Same |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3882179T3 (en) * | 1987-08-03 | 1997-07-10 | Mitsubishi Paper Mills Ltd | Additive for lithographic printing ink. |
USRE34647E (en) * | 1988-11-04 | 1994-06-28 | Petrolite Corporation | Overprint aqueous varnish |
US5376170A (en) * | 1988-11-04 | 1994-12-27 | Petrolite Corporation | Additive dispersions containing ethoxylated alcohols |
US4908063A (en) * | 1988-11-04 | 1990-03-13 | Petrolite Corporation | Additive composition for water-based inks |
US5017222A (en) * | 1989-12-07 | 1991-05-21 | Dow Corning Corporation | Polish containing micronized wax particles |
DE4018182A1 (en) * | 1990-06-07 | 1991-12-12 | Bayer Ag | Ink prepn. for offset printing |
JP3176444B2 (en) * | 1992-10-01 | 2001-06-18 | 株式会社リコー | Aqueous ink and recording method using the same |
US5977263A (en) * | 1992-12-10 | 1999-11-02 | 3M Innovative Properties Company | Thermal transfer compositions, articles and graphic articles made with same |
US5468532A (en) * | 1992-12-10 | 1995-11-21 | Minnesota Mining And Manufacturing Company | Multilayer graphic article with color layer |
DE4407643A1 (en) * | 1994-03-08 | 1995-09-14 | Deurex Wachs Chemie Gmbh | Recycling of polyolefin waste |
US5462591A (en) * | 1994-05-06 | 1995-10-31 | Tektronix, Inc. | Hyperthermogelling aqueous phase change inks and methods for using them in an ink jet printer |
US5554212A (en) * | 1994-05-06 | 1996-09-10 | Tektronix, Inc. | Waterfast high gloss hyperthermogelling aqueous phase change ink and method for use |
US5484475A (en) * | 1994-08-29 | 1996-01-16 | Xerox Corporation | Micellar-based ink compositions |
US5634971A (en) * | 1995-10-25 | 1997-06-03 | Petrolite Corporation | Process for dispersing pigments with polyoxyalkylated ethers |
US5792734A (en) * | 1996-04-15 | 1998-08-11 | Flint Ink Corporation | Slip enhancer composition for printing press operations |
WO1998058031A1 (en) * | 1997-06-17 | 1998-12-23 | Toyo Ink Manufacturing Co., Ltd. | Water-repellent overprint varnish composition and printed matter made by using the same |
ATE266679T1 (en) | 1998-07-30 | 2004-05-15 | Sasol Wax South Africa Pty Ltd | GROW |
US6541560B1 (en) | 2000-03-15 | 2003-04-01 | Graphic Packaging Corporation | Control of volatile carbonyl compound in compositions used in printing, printing methods and resulting printed structure |
US6546872B1 (en) | 2000-11-27 | 2003-04-15 | Sonoco Development, Inc. | Profile printing method with additive technology |
US6701605B2 (en) | 2001-10-09 | 2004-03-09 | Sonoco Development, Inc. | Conductive electrical element and antenna with ink additive technology |
US7131380B2 (en) | 2001-11-07 | 2006-11-07 | Sonoco Development, Inc. | EB pattern profile printing |
US6709503B1 (en) | 2002-12-19 | 2004-03-23 | Sun Chemical Corporation | Waterbased heatset offset ink compositions |
JP4344673B2 (en) * | 2003-10-15 | 2009-10-14 | フタムラ化学株式会社 | Gas barrier film |
JP4475382B2 (en) * | 2003-11-21 | 2010-06-09 | 東洋アドレ株式会社 | Water-based ink additive and water-based ink |
US20080090929A1 (en) * | 2006-10-13 | 2008-04-17 | Hexion Specialty Chemicals, Inc. | Ink compositions and methods of use thereof |
US7910646B1 (en) * | 2007-11-16 | 2011-03-22 | Daniel Berg | Molding composition with reduced coefficient of friction and improved release properties |
US8211617B2 (en) * | 2009-08-17 | 2012-07-03 | Palo Alto Research Center Incorporated | Solid inks for printed masks |
US8303832B2 (en) * | 2009-08-17 | 2012-11-06 | Palo Alto Research Center Incorporated | Solid inks for masks for printed circuit boards and other electronic devices |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2928752A (en) * | 1956-09-15 | 1960-03-15 | Dehydag Gmbh | Paraffin emulsions for protection of masonry surfaces during setting |
US3249448A (en) * | 1963-08-06 | 1966-05-03 | Interchem Corp | Transfer ink |
US3441628A (en) * | 1965-12-13 | 1969-04-29 | Leuna Werke Veb | Process for producing waxlike low molecular ethylene polymers and copolymers |
US3563910A (en) * | 1967-11-20 | 1971-02-16 | Ethyl Corp | Chemical emulsion compositions |
GB1305211A (en) * | 1969-01-07 | 1973-01-31 | ||
DE2411832A1 (en) * | 1973-03-12 | 1974-09-26 | Pitney Bowes | LITHOGRAPHIC INK |
US3950290A (en) * | 1973-05-01 | 1976-04-13 | A. E. Staley Manufacturing Company | Aqueous coating and printing compositions |
US3953625A (en) * | 1971-12-07 | 1976-04-27 | Horizons Incorporated | Process for making indicia bearing anodized article |
GB2025987A (en) * | 1978-07-20 | 1980-01-30 | Owens Illinois Inc | Abrasion Resistant Coating for Foamed Plastic Substrates |
US4246150A (en) * | 1979-09-17 | 1981-01-20 | American Hoechst Corporation | Lubricant for heat processing of vinyl chloride resins |
SU899612A1 (en) * | 1979-06-27 | 1982-01-23 | Киевский Филиал По Специальным Видам Печати Всесоюзного Научно-Исследовательского Института Комплексных Проблем Полиграфии | Ink for flexographic or intaglo printing on cellophane |
EP0059461A1 (en) * | 1981-03-03 | 1982-09-08 | Basf Wyandotte Corporation | Water-based hydraulic fluids incorporating a polyether as a lubricant and corrosion inhibitor |
DE3324390A1 (en) * | 1982-07-08 | 1984-01-12 | Shinto Paint Co. Ltd., Amagasaki | COATING MEASURES |
US4459388A (en) * | 1981-03-27 | 1984-07-10 | Basf Aktiengesellschaft | Preparation of emulsifiable polyethylene by oxidizing polyethylene in a fluidized bed reactor |
US4533486A (en) * | 1984-09-24 | 1985-08-06 | Olin Corporation | Sulfated addition products of selected unsaturated dicarboxylic acids and poly(oxyalkylated) alcohols as anionic surfactants |
US4740495A (en) * | 1985-04-18 | 1988-04-26 | Ncr Corporation | Protective coating for thermosensitive material |
EP0310194A1 (en) * | 1987-09-30 | 1989-04-05 | Union Carbide Corporation | Continuous process for producing linear, secondary, aliphatic alcohol ethoxylates |
US4827028A (en) * | 1984-04-23 | 1989-05-02 | Olin Corporation | Anionic surfactants |
US4865908A (en) * | 1986-03-07 | 1989-09-12 | Mobil Oil Corporation | Coated, oriented polymer film laminate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4459338A (en) * | 1982-03-19 | 1984-07-10 | The United States Of America As Represented By The United States Department Of Energy | Method of deposition of silicon carbide layers on substrates and product |
US4908063A (en) * | 1988-11-04 | 1990-03-13 | Petrolite Corporation | Additive composition for water-based inks |
-
1988
- 1988-11-04 US US07/267,064 patent/US4908063A/en not_active Ceased
-
1989
- 1989-11-02 JP JP1285076A patent/JPH02169797A/en active Pending
- 1989-11-03 EP EP19890311430 patent/EP0367627A3/en not_active Ceased
-
1992
- 1992-03-10 US US07/849,292 patent/USRE34329E/en not_active Expired - Fee Related
- 1992-03-13 US US07/851,430 patent/USRE34792E/en not_active Expired - Lifetime
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2928752A (en) * | 1956-09-15 | 1960-03-15 | Dehydag Gmbh | Paraffin emulsions for protection of masonry surfaces during setting |
US3249448A (en) * | 1963-08-06 | 1966-05-03 | Interchem Corp | Transfer ink |
US3441628A (en) * | 1965-12-13 | 1969-04-29 | Leuna Werke Veb | Process for producing waxlike low molecular ethylene polymers and copolymers |
US3563910A (en) * | 1967-11-20 | 1971-02-16 | Ethyl Corp | Chemical emulsion compositions |
GB1305211A (en) * | 1969-01-07 | 1973-01-31 | ||
US3953625A (en) * | 1971-12-07 | 1976-04-27 | Horizons Incorporated | Process for making indicia bearing anodized article |
DE2411832A1 (en) * | 1973-03-12 | 1974-09-26 | Pitney Bowes | LITHOGRAPHIC INK |
US3950290A (en) * | 1973-05-01 | 1976-04-13 | A. E. Staley Manufacturing Company | Aqueous coating and printing compositions |
GB2025987A (en) * | 1978-07-20 | 1980-01-30 | Owens Illinois Inc | Abrasion Resistant Coating for Foamed Plastic Substrates |
SU899612A1 (en) * | 1979-06-27 | 1982-01-23 | Киевский Филиал По Специальным Видам Печати Всесоюзного Научно-Исследовательского Института Комплексных Проблем Полиграфии | Ink for flexographic or intaglo printing on cellophane |
US4246150A (en) * | 1979-09-17 | 1981-01-20 | American Hoechst Corporation | Lubricant for heat processing of vinyl chloride resins |
EP0059461A1 (en) * | 1981-03-03 | 1982-09-08 | Basf Wyandotte Corporation | Water-based hydraulic fluids incorporating a polyether as a lubricant and corrosion inhibitor |
US4459388A (en) * | 1981-03-27 | 1984-07-10 | Basf Aktiengesellschaft | Preparation of emulsifiable polyethylene by oxidizing polyethylene in a fluidized bed reactor |
DE3324390A1 (en) * | 1982-07-08 | 1984-01-12 | Shinto Paint Co. Ltd., Amagasaki | COATING MEASURES |
US4499225A (en) * | 1982-07-08 | 1985-02-12 | Shinto Paint Co., Ltd. | Coating composition |
US4827028A (en) * | 1984-04-23 | 1989-05-02 | Olin Corporation | Anionic surfactants |
US4533486A (en) * | 1984-09-24 | 1985-08-06 | Olin Corporation | Sulfated addition products of selected unsaturated dicarboxylic acids and poly(oxyalkylated) alcohols as anionic surfactants |
US4740495A (en) * | 1985-04-18 | 1988-04-26 | Ncr Corporation | Protective coating for thermosensitive material |
US4865908A (en) * | 1986-03-07 | 1989-09-12 | Mobil Oil Corporation | Coated, oriented polymer film laminate |
EP0310194A1 (en) * | 1987-09-30 | 1989-04-05 | Union Carbide Corporation | Continuous process for producing linear, secondary, aliphatic alcohol ethoxylates |
Non-Patent Citations (7)
Title |
---|
"Laboratory Preparation of a Dispersion of UNITHOX™ Ethoxylated Alcohols in Water," UNITHOX Ethoxylated Alcohols, Technical Release 4007.0. Petrolite Specialty Polymers Group (1986). |
"Potential End Use Applications for UNITHOX™ Ethoxylated Alcohols," UNITHOX Ethoxylated Alcohols, Technical Release 4002.0 Petrolite Specialty Polymers Group (1986). |
"UNITOX™ Ethoxylates: New Solutions for the Puzzles in Your Water-Based System," Petrolite Specialty Polymers Group (1986). |
Laboratory Preparation of a Dispersion of UNITHOX Ethoxylated Alcohols in Water, UNITHOX Ethoxylated Alcohols, Technical Release 4007.0. Petrolite Specialty Polymers Group (1986). * |
Potential End Use Applications for UNITHOX Ethoxylated Alcohols, UNITHOX Ethoxylated Alcohols, Technical Release 4002.0 Petrolite Specialty Polymers Group (1986). * |
Unilin Alcohols, Technical Release, Petrolite Specialty Polymers Group (1985). * |
UNITOX Ethoxylates: New Solutions for the Puzzles in Your Water Based System, Petrolite Specialty Polymers Group (1986). * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6545064B1 (en) | 1999-11-24 | 2003-04-08 | Avery Dennison Corporation | Coating composition comprising ethoxylated diacrylates |
US20080305313A1 (en) * | 2004-09-15 | 2008-12-11 | Crane & Co., Inc. | Security Device and Novel Anti-Counterfeit Product Employing Same |
US8287993B2 (en) | 2004-09-15 | 2012-10-16 | Crane & Co., Inc. | Security device and novel anti-counterfeit product employing same |
Also Published As
Publication number | Publication date |
---|---|
EP0367627A2 (en) | 1990-05-09 |
USRE34329E (en) | 1993-08-03 |
EP0367627A3 (en) | 1992-03-18 |
JPH02169797A (en) | 1990-06-29 |
US4908063A (en) | 1990-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE34792E (en) | Additive composition for water-based inks | |
US5158606A (en) | Low rub printing ink | |
CN102046741B (en) | Novel wax dispersion formulations, method of producing same, and uses | |
EP0356341A1 (en) | Ink composition containing a blend of a polyester and an acrylic polymer | |
EP0365388A1 (en) | Ink composition containing a blend of a polyester, an acrylic polymer and a vinyl polymer | |
US5008144A (en) | Overprint aqueous varnish | |
US5035946A (en) | Overprint aqueous varnish | |
US5376170A (en) | Additive dispersions containing ethoxylated alcohols | |
US2866711A (en) | Carbon paper inks and method for making same | |
USRE34647E (en) | Overprint aqueous varnish | |
JP4795520B2 (en) | Emulsion ink | |
EP1203799B1 (en) | Anti-abrasion ink additives containing reduced amounts of polytetrafluoroethylene and inks containing such additives | |
US5000092A (en) | Printing processes | |
US4975119A (en) | Liquid antisettling agents for organic coating compositions | |
JP2001233947A (en) | Polyester resin, its production method, binder for printing ink, and printing ink | |
JP3446728B2 (en) | Polyester resin composition, production method thereof, binder for printing ink and printing ink | |
JP2002226754A (en) | Ink composition for offset printing | |
US20080264296A1 (en) | Biodegradable vehicle/carrier for printing ink | |
JP3337085B2 (en) | Printing ink composition | |
CN115521672B (en) | Water-based environment-friendly aluminum foil varnish and preparation method thereof | |
JPH0255777A (en) | Aqueous dispersion of solid | |
JP3078184B2 (en) | Low foaming aqueous ink composition | |
EP0079764B1 (en) | Printing inks | |
EP0248192A2 (en) | Liquid coating composition | |
PT100407B (en) | COMPOSITION OF PRINTING INK WITH LOW WEAR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PETROLITE CORPORATION;REEL/FRAME:008709/0825 Effective date: 19970702 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |