USRE41039E1 - Stackable chip package with flex carrier - Google Patents
Stackable chip package with flex carrier Download PDFInfo
- Publication number
- USRE41039E1 USRE41039E1 US10/974,046 US97404604A USRE41039E US RE41039 E1 USRE41039 E1 US RE41039E1 US 97404604 A US97404604 A US 97404604A US RE41039 E USRE41039 E US RE41039E
- Authority
- US
- United States
- Prior art keywords
- integrated circuit
- circuit chip
- conductive pad
- conductive
- central portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 238000003491 array Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 25
- 238000005476 soldering Methods 0.000 claims description 9
- 230000004907 flux Effects 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 description 18
- 230000008569 process Effects 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/4985—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/10—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
- H01L2225/1011—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1023—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/10—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
- H01L2225/1011—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
- H01L2225/1041—Special adaptations for top connections of the lowermost container, e.g. redistribution layer, integral interposer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/10—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
- H01L2225/1011—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1064—Electrical connections provided on a side surface of one or more of the containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/10—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10
- H01L2225/1011—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices having separate containers the devices being integrated devices of class H10 the containers being in a stacked arrangement
- H01L2225/1094—Thermal management, e.g. cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates generally to chip stacks, and more particularly to a stackable integrated circuit chip package including a flex circuit which allows multiple chip packages to be quickly, easily and inexpensively assembled into a chip stack having a minimal profile.
- Z-Stacking perhaps one of the most commonly used techniques to increase memory capacity is the stacking of memory devices into a vertical chip stack, sometimes referred to as 3D packaging or Z-Stacking.
- Z-Stacking from two (2) to as many as eight (8) memory devices or other integrated circuit (IC) chips are interconnected in a single component (i.e., chip stack) which is mountable to the “footprint” typically used for a single package device such as a packaged chip.
- TSOP thin small outline package
- LCC leadless chip carrier
- the various arrangements and techniques described in these issued patents and other currently pending patent applications of Applicant have been found to provide chip stacks which are relatively easy and inexpensive to manufacture, and are well suited for use in a multitude of differing applications.
- the present invention provides yet a further alternative arrangement and technique for forming a chip stack which involves the use of stackable integrated circuit chip packages including flex circuits.
- the inclusion of the flex circuits in the chip packages of the present invention provides numerous advantages in the assembly of the chip stack, including significantly greater ease in achieving and maintaining the alignment between the chip packages within the stack. Additionally, the use of the flex circuits allows for the assembly of the chip packages into a chip stack which has a minimal profile.
- a stackable integrated circuit chip package comprises a flex circuit which itself comprises a flexible substrate having opposed, generally planar top and bottom surfaces.
- the substrate is preferably fabricated from a polyamide which has a thickness of several mils or less, and may have a thickness down to about 1 mil.
- the substrate preferably has a generally rectangular configuration defining a pair of longitudinal peripheral edge segments and a pair of lateral peripheral edge segments. Disposed on the top surface of the substrate is a first conductive pad array, while disposed on the bottom surface is a second conductive pad array.
- the first and second conductive pad arrays extend between the longitudinal peripheral edge segments in spaced relation to the lateral peripheral edge segments.
- the first conductive pad array preferably comprises a first set of pads, with the second conductive pad array preferably comprising a second set of pads which are arranged in an identical pattern to the first set of pads such that the pads of the first set are aligned (i.e., in registry with) respective ones of the pads of the second set.
- the third conductive pad array comprises a third set of pads, with the fourth conductive pad array comprising a fourth set of pads.
- the third and fourth sets of pads are preferably arranged on the bottom surface of the substrate in patterns which are mirror images to each other.
- the pads of the third and fourth sets are electrically connected to respective ones of the pads of the second set through the use of conductive tracings.
- the electrical connection of the integrated circuit chip to the first and second conductive pad arrays is facilitated by the insertion of the conductive contacts into the cross-slits of respective ones of the pads of the first set, and advancement therethrough to protrude from respective ones of the pads of the second set and hence the bottom surface of the substrate.
- the substrate is wrapped about at least a portion of the integrated circuit chip such that the third and fourth conductive pad arrays collectively define a fifth conductive pad array which is electrically connectable to another stackable integrated circuit chip package.
- the fifth conductive pad array comprises the third and fourth sets of pads which, when the substrate is wrapped about the integrated circuit chip, are arranged in an identical pattern to the first and second sets of pads.
- the substrate is wrapped about the longitudinal sides of the body such that the fifth conductive pad array extends over the top surface of the body and the third and fourth sets of pads making up the fifth conductive pad array are in substantial alignment or registry with respective pairs of the first and second sets of pads.
- the substrate is preferably sized relative to the integrated circuit chip such that the lateral peripheral edge segments of the substrate extend along the top surface of the body in generally parallel relation to each other and are separated by a narrow gap, with the lateral sides of the body being substantially flush with respective ones of the longitudinal peripheral edge segments of the substrate.
- the integrate circuit chip is positioned upon the central portion of the substrate (which includes the first and second conductive pad arrays thereon), with the opposed end portions of the substrate (which include the third and fourth conductive pad arrays thereon) being wrapped about the integrated circuit chip so as to cover the top surface of the body thereof.
- These end portions of the substrate are preferably attached to the top surface of the body through the use of an adhesive.
- the chip package may be provided with a pair of heat sinks which are attached to respective ones of the lateral sides of the body of the integrated circuit chip.
- the conductive contacts of the integrated circuit chip are preferably soldered to respective ones of the pads of the second set.
- each of the conductive contacts may be pre-coated with solder paste or flux prior to the placement of the integrated circuit chip upon the first conductive pad array, with the application of heat to the chip package subsequent to the flex circuit being wrapped about the integrated circuit chip effectuating the soldering of the conductive contacts to the second set of pads, and hence the conductive pattern of the flex circuit.
- those portions of the conductive contacts protruding from the pads of the second set and hence the bottom surface of the substrate may be electrically connected to respective ones of the conductive pads of a printed circuit board, or to respective ones of the third and fourth sets of pads of the fifth conductive pad array of another identically configured stackable integrated circuit chip package.
- multiple chip packages of the present invention may be stacked upon one another, with solder paste or flux being pre-applied to the third and fourth sets of pads of the fifth conductive pad array prior to the stacking of another chip package thereupon such that the subsequent application of heat to the stack facilitates the desired electrical connection of the chip packages to each other.
- the engagement between the exposed portions of the conductive contacts and the third and fourth sets of pads of the fifth conductive pad array performs a self-aligning function during the soldering process, thus simply requiring that the longitudinal and lateral edges of the chip packages in the stack be aligned with each other prior to the application of heat thereto.
- the flex circuit need not necessarily be provided with the first conductive pad array in that the conductive contacts of the integrated circuit chip may be advanced through the cross-slits within the substrate and electrically mounted via soldering to only the pads of the second set forming the second conductive pad array. Additionally, the flex circuit may be adapted to be usable in conjunction with a bare die device by eliminating the cross-slits and electrically connecting the pads of the first set forming the first conductive pad array to respective ones of the pads of the second set forming the second pad array through the use of vias.
- FIG. 1 is a top perspective view of the stackable integrated circuit chip package constructed in accordance with the present invention
- FIG. 8 is a perspective view illustrating one of the steps in the sequence of assembling the present chip package
- FIG. 10 is a top perspective view of a chip stack similar to that shown in FIG. 9 with the further inclusion of heat sinks on each of the chip packages.
- FIG. 1 perspectively illustrates a stackable integrated circuit chip package 10 constructed in accordance with the present invention.
- the chip package 10 comprises a flex circuit 12 which itself comprises a flexible substrate 14 having a generally planar top surface 16 and a generally planar bottom surface 18 .
- the substrate 14 preferably has a generally rectangular configuration defining a pair of longitudinal peripheral edge segments 20 and a pair of lateral peripheral edge segments 22 .
- the substrate 14 is preferably fabricated from a polyamide which has a thickness of several mils or less, and may have a thickness down to about 1 mil.
- the first conductive pad array 24 preferably comprises a first set of pads 36
- the second conductive pad array 26 preferably comprising a second set of pads 38 which are arranged in an identical pattern to the first set of pads 36 such that the pads 36 of the first set are aligned (i.e., in registry with) respective ones of the pads 38 of the second set.
- the third conductive pad array 30 comprises a third set of pads 40
- the fourth conductive pad array 32 comprising a fourth set of pads 42 .
- the third and fourth sets of pads 40 , 42 are preferably arranged on the bottom surface 18 of the substrate 14 in patterns which are mirror images to each other.
- the pads 40 , 42 of the third and fourth sets are electrically connected to respective ones of the pads 38 of the second set through the use of conductive tracings 44 .
- the chip package 10 of the present invention comprises an integrated circuit chip 48 which is electrically connected to the first and second conductive pad arrays 24 , 26 , and hence to the third and fourth conductive pad arrays 30 , 32 by virtue of their electrical connection to the second conductive pad array 26 via the conductive tracings 44 .
- the integrated circuit chip 48 preferably comprises a flip chip device or a fine pitch BGA (ball grid array) device, and includes a rectangularly configured body 50 defining a generally planar top surface 52 , a generally planar bottom surface 54 , a pair of longitudinal sides 56 , and a pair of lateral sides 58 .
- the integrated circuit chip 40 is initially positioned upon the top surface 16 of the central portion 28 of the substrate 14 , with the opposed end portions 34 of the substrate 14 thereafter being wrapped about the integrated circuit chip 48 so as to substantially cover the top surface 52 of the body 50 thereof.
- the chip package 10 may be provided with a pair of heat sinks 66 which are attached to respective ones of the lateral sides 58 of the body 50 of the integrated circuit chip 48 .
- the conductive contacts 60 of the integrated circuit chip 48 are preferably soldered to respective ones of the pads 38 of the second set.
- each of the conductive contacts 60 may be pre-coated with solder paste or flux prior to the placement of the integrated circuit chip 48 upon the first conductive pad array 24 , with the application of heat to the chip package 10 subsequent to the flex circuit 12 being wrapped about the integrated circuit chip 48 effectuating the soldering of the conductive contacts 60 to the second set of pads 38 , and hence the conductive pattern of the flex circuit 12 .
- the preferred method of assembling the same comprises the initial step of fabricating the flex circuit 12 to include a desired conductive pattern thereon.
- the integrated circuit chip 48 is then positioned upon the first conductive pad array 24 in the above-described manner, with sufficient pressure being applied to the body 50 of the integrated circuit chip 48 as is needed to facilitate the advancement of the conductive contacts 60 thereof through the cross-slits 46 so as to protrude from the pads 38 of the second set.
- the conductive contacts 60 of the integrated circuit chip 48 are preferably pre-coated with solder paste or flux.
- the substrate 14 of the flex circuit 12 is tightly wrapped about the body 50 of the integrated circuit chip 48 in the above-described manner, with the end portions 34 of the substrate 14 then being adhesively secured to the top surface 52 of the body 50 to facilitate the formation of the fifth conductive pad array 62 which extends over the top surface 52 of the body 50 .
- the second conductive pad array 26 extends over the bottom surface 54 of the body 50 , as does the first conductive pad array 24 .
- only the second and fifth conductive pad arrays 26 , 62 are exposed due to the manner in which the substrate 14 is wrapped about the integrated circuit chip 48 .
- heat is typically not applied to the chip package 10 until the same is incorporated into a chip stack including at least one additional chip package 10 .
- two or more chip packages 10 of the present invention may be assembled into a chip stack 68 .
- the chip stack 68 multiple chip packages 10 are stacked upon one another such that those portions of the conductive contacts 60 protruding from the flex circuit 12 in each of the chip packages 10 other than for the lowermost chip package 10 are engaged to respective ones of the third and fourth sets of pads 40 , 42 of the fifth conductive pad array 62 of another chip package 10 .
- Such clamping may be facilitated through the use of a clip which is secured to the flex circuits 12 of the uppermost and lowermost chip packages 10 within the chip stack 68 .
- a clip which is secured to the flex circuits 12 of the uppermost and lowermost chip packages 10 within the chip stack 68 .
- the chip packages 10 within the chip stack 68 are provided with the heat sinks 66 as shown in FIG. 10
- such clip may be applied to the heat sinks 66 of the uppermost and lowermost chip packages 10 within the chip stack 68 .
- Those portions of the conductive contacts 60 protruding from flex circuit 12 in the lowermost chip package 10 within the chip stack 68 may be electrically connected to respective ones of the conductive pads of a printed circuit board or mother board.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Wire Bonding (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/974,046 USRE41039E1 (en) | 2000-01-13 | 2004-10-26 | Stackable chip package with flex carrier |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/482,294 US6262895B1 (en) | 2000-01-13 | 2000-01-13 | Stackable chip package with flex carrier |
US09/838,773 US6473308B2 (en) | 2000-01-13 | 2001-04-19 | Stackable chip package with flex carrier |
US10/974,046 USRE41039E1 (en) | 2000-01-13 | 2004-10-26 | Stackable chip package with flex carrier |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/838,773 Reissue US6473308B2 (en) | 2000-01-13 | 2001-04-19 | Stackable chip package with flex carrier |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41039E1 true USRE41039E1 (en) | 2009-12-15 |
Family
ID=23915499
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/482,294 Expired - Lifetime US6262895B1 (en) | 2000-01-13 | 2000-01-13 | Stackable chip package with flex carrier |
US09/838,773 Ceased US6473308B2 (en) | 2000-01-13 | 2001-04-19 | Stackable chip package with flex carrier |
US10/974,046 Expired - Lifetime USRE41039E1 (en) | 2000-01-13 | 2004-10-26 | Stackable chip package with flex carrier |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/482,294 Expired - Lifetime US6262895B1 (en) | 2000-01-13 | 2000-01-13 | Stackable chip package with flex carrier |
US09/838,773 Ceased US6473308B2 (en) | 2000-01-13 | 2001-04-19 | Stackable chip package with flex carrier |
Country Status (1)
Country | Link |
---|---|
US (3) | US6262895B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170215288A1 (en) * | 2015-08-27 | 2017-07-27 | Boe Technology Group Co., Ltd. | Flexible display panel and method of manufacturing the same, and flexible display apparatus |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9054094B2 (en) | 1997-04-08 | 2015-06-09 | X2Y Attenuators, Llc | Energy conditioning circuit arrangement for integrated circuit |
US7321485B2 (en) | 1997-04-08 | 2008-01-22 | X2Y Attenuators, Llc | Arrangement for energy conditioning |
US7301748B2 (en) | 1997-04-08 | 2007-11-27 | Anthony Anthony A | Universal energy conditioning interposer with circuit architecture |
US6018448A (en) * | 1997-04-08 | 2000-01-25 | X2Y Attenuators, L.L.C. | Paired multi-layered dielectric independent passive component architecture resulting in differential and common mode filtering with surge protection in one integrated package |
US7336468B2 (en) | 1997-04-08 | 2008-02-26 | X2Y Attenuators, Llc | Arrangement for energy conditioning |
AU3581300A (en) * | 1999-01-08 | 2000-07-24 | Emisphere Technologies, Inc. | Polymeric delivery agents and delivery agent compounds |
JP3855594B2 (en) * | 2000-04-25 | 2006-12-13 | セイコーエプソン株式会社 | Semiconductor device |
US6660561B2 (en) * | 2000-06-15 | 2003-12-09 | Dpac Technologies Corp. | Method of assembling a stackable integrated circuit chip |
US6552910B1 (en) * | 2000-06-28 | 2003-04-22 | Micron Technology, Inc. | Stacked-die assemblies with a plurality of microelectronic devices and methods of manufacture |
SG114488A1 (en) * | 2000-06-28 | 2005-09-28 | Micron Technology Inc | Flexible ball grid array chip scale packages and methods of fabrication |
US6560117B2 (en) * | 2000-06-28 | 2003-05-06 | Micron Technology, Inc. | Packaged microelectronic die assemblies and methods of manufacture |
US7298031B1 (en) * | 2000-08-09 | 2007-11-20 | Micron Technology, Inc. | Multiple substrate microelectronic devices and methods of manufacture |
US6607937B1 (en) | 2000-08-23 | 2003-08-19 | Micron Technology, Inc. | Stacked microelectronic dies and methods for stacking microelectronic dies |
US20020074637A1 (en) * | 2000-12-19 | 2002-06-20 | Intel Corporation | Stacked flip chip assemblies |
US6884653B2 (en) * | 2001-03-21 | 2005-04-26 | Micron Technology, Inc. | Folded interposer |
US6762487B2 (en) * | 2001-04-19 | 2004-07-13 | Simpletech, Inc. | Stack arrangements of chips and interconnecting members |
US7115986B2 (en) * | 2001-05-02 | 2006-10-03 | Micron Technology, Inc. | Flexible ball grid array chip scale packages |
TWI241531B (en) * | 2001-05-22 | 2005-10-11 | Atrua Technologies Inc | Improved connection assembly for integrated circuit sensors |
US20030067082A1 (en) * | 2001-05-25 | 2003-04-10 | Mark Moshayedi | Apparatus and methods for stacking integrated circuit devices with interconnected stacking structure |
US20030040166A1 (en) * | 2001-05-25 | 2003-02-27 | Mark Moshayedi | Apparatus and method for stacking integrated circuits |
US20030002267A1 (en) * | 2001-06-15 | 2003-01-02 | Mantz Frank E. | I/O interface structure |
US20020190367A1 (en) * | 2001-06-15 | 2002-12-19 | Mantz Frank E. | Slice interconnect structure |
JP3687742B2 (en) * | 2001-07-13 | 2005-08-24 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Function expansion board, communication expansion board, insulation film for communication expansion board, computer system, method of removing function expansion board and electronic circuit board |
US6627984B2 (en) * | 2001-07-24 | 2003-09-30 | Dense-Pac Microsystems, Inc. | Chip stack with differing chip package types |
SG122743A1 (en) | 2001-08-21 | 2006-06-29 | Micron Technology Inc | Microelectronic devices and methods of manufacture |
US20030042615A1 (en) | 2001-08-30 | 2003-03-06 | Tongbi Jiang | Stacked microelectronic devices and methods of fabricating same |
SG112807A1 (en) * | 2001-08-31 | 2005-07-28 | Micron Technology Inc | Packaged microelectronic die assemblies and methods of manufacture |
US6573461B2 (en) | 2001-09-20 | 2003-06-03 | Dpac Technologies Corp | Retaining ring interconnect used for 3-D stacking |
US6573460B2 (en) * | 2001-09-20 | 2003-06-03 | Dpac Technologies Corp | Post in ring interconnect using for 3-D stacking |
US6696320B2 (en) * | 2001-09-30 | 2004-02-24 | Intel Corporation | Low profile stacked multi-chip package and method of forming same |
US6956284B2 (en) * | 2001-10-26 | 2005-10-18 | Staktek Group L.P. | Integrated circuit stacking system and method |
US6940729B2 (en) * | 2001-10-26 | 2005-09-06 | Staktek Group L.P. | Integrated circuit stacking system and method |
US6914324B2 (en) * | 2001-10-26 | 2005-07-05 | Staktek Group L.P. | Memory expansion and chip scale stacking system and method |
US7485951B2 (en) * | 2001-10-26 | 2009-02-03 | Entorian Technologies, Lp | Modularized die stacking system and method |
US7026708B2 (en) * | 2001-10-26 | 2006-04-11 | Staktek Group L.P. | Low profile chip scale stacking system and method |
US20060255446A1 (en) | 2001-10-26 | 2006-11-16 | Staktek Group, L.P. | Stacked modules and method |
US7656678B2 (en) | 2001-10-26 | 2010-02-02 | Entorian Technologies, Lp | Stacked module systems |
US6576992B1 (en) * | 2001-10-26 | 2003-06-10 | Staktek Group L.P. | Chip scale stacking system and method |
SG104293A1 (en) * | 2002-01-09 | 2004-06-21 | Micron Technology Inc | Elimination of rdl using tape base flip chip on flex for die stacking |
US6896760B1 (en) * | 2002-01-16 | 2005-05-24 | Micron Technology, Inc. | Fabrication of stacked microelectronic devices |
SG115459A1 (en) * | 2002-03-04 | 2005-10-28 | Micron Technology Inc | Flip chip packaging using recessed interposer terminals |
SG111935A1 (en) | 2002-03-04 | 2005-06-29 | Micron Technology Inc | Interposer configured to reduce the profiles of semiconductor device assemblies and packages including the same and methods |
SG121707A1 (en) | 2002-03-04 | 2006-05-26 | Micron Technology Inc | Method and apparatus for flip-chip packaging providing testing capability |
SG115456A1 (en) * | 2002-03-04 | 2005-10-28 | Micron Technology Inc | Semiconductor die packages with recessed interconnecting structures and methods for assembling the same |
US6975035B2 (en) * | 2002-03-04 | 2005-12-13 | Micron Technology, Inc. | Method and apparatus for dielectric filling of flip chip on interposer assembly |
SG115455A1 (en) * | 2002-03-04 | 2005-10-28 | Micron Technology Inc | Methods for assembly and packaging of flip chip configured dice with interposer |
JP2004071737A (en) * | 2002-08-05 | 2004-03-04 | Shinko Electric Ind Co Ltd | Case body and electronic apparatus using the same |
US20040036170A1 (en) * | 2002-08-20 | 2004-02-26 | Lee Teck Kheng | Double bumping of flexible substrate for first and second level interconnects |
JP2004103843A (en) * | 2002-09-10 | 2004-04-02 | Renesas Technology Corp | Electronic element and electronic device using the same |
US6856010B2 (en) * | 2002-12-05 | 2005-02-15 | Staktek Group L.P. | Thin scale outline package |
JP4072505B2 (en) * | 2003-02-28 | 2008-04-09 | エルピーダメモリ株式会社 | Stacked semiconductor package |
US6841029B2 (en) * | 2003-03-27 | 2005-01-11 | Advanced Cardiovascular Systems, Inc. | Surface modification of expanded ultra high molecular weight polyethylene (eUHMWPE) for improved bondability |
US20040207990A1 (en) * | 2003-04-21 | 2004-10-21 | Rose Andrew C. | Stair-step signal routing |
US6879032B2 (en) * | 2003-07-18 | 2005-04-12 | Agilent Technologies, Inc. | Folded flex circuit interconnect having a grid array interface |
EP1698033A4 (en) | 2003-12-22 | 2010-07-21 | X2Y Attenuators Llc | Internally shielded energy conditioner |
US7258549B2 (en) * | 2004-02-20 | 2007-08-21 | Matsushita Electric Industrial Co., Ltd. | Connection member and mount assembly and production method of the same |
US7112877B2 (en) * | 2004-06-28 | 2006-09-26 | General Electric Company | High density package with wrap around interconnect |
US7443023B2 (en) * | 2004-09-03 | 2008-10-28 | Entorian Technologies, Lp | High capacity thin module system |
US7446410B2 (en) * | 2004-09-03 | 2008-11-04 | Entorian Technologies, Lp | Circuit module with thermal casing systems |
US7423885B2 (en) | 2004-09-03 | 2008-09-09 | Entorian Technologies, Lp | Die module system |
US7579687B2 (en) * | 2004-09-03 | 2009-08-25 | Entorian Technologies, Lp | Circuit module turbulence enhancement systems and methods |
US7760513B2 (en) | 2004-09-03 | 2010-07-20 | Entorian Technologies Lp | Modified core for circuit module system and method |
SG121909A1 (en) * | 2004-10-13 | 2006-05-26 | Seagate Technology Llc | Compact connector for small devices |
JP4199724B2 (en) * | 2004-12-03 | 2008-12-17 | エルピーダメモリ株式会社 | Stacked semiconductor package |
US20060185895A1 (en) * | 2005-02-24 | 2006-08-24 | Navinchandra Kalidas | Universal pattern of contact pads for semiconductor reflow interconnections |
WO2006093831A2 (en) | 2005-03-01 | 2006-09-08 | X2Y Attenuators, Llc | Energy conditioner with tied through electrodes |
WO2006093830A2 (en) | 2005-03-01 | 2006-09-08 | X2Y Attenuators, Llc | Internally overlapped conditioners |
US7576995B2 (en) * | 2005-11-04 | 2009-08-18 | Entorian Technologies, Lp | Flex circuit apparatus and method for adding capacitance while conserving circuit board surface area |
WO2007103965A1 (en) | 2006-03-07 | 2007-09-13 | X2Y Attenuators, Llc | Energy conditioner structures |
JP2007266240A (en) * | 2006-03-28 | 2007-10-11 | Fujitsu Ltd | Electronic device and electronic apparatus having the same |
US7888185B2 (en) * | 2006-08-17 | 2011-02-15 | Micron Technology, Inc. | Semiconductor device assemblies and systems including at least one conductive pathway extending around a side of at least one semiconductor device |
JP2008078205A (en) * | 2006-09-19 | 2008-04-03 | Fujitsu Ltd | Substrate assembly and manufacturing method thereof, electronic component assembly and manufacturing method thereof, and electronic apparatus |
US7417310B2 (en) | 2006-11-02 | 2008-08-26 | Entorian Technologies, Lp | Circuit module having force resistant construction |
TWI384739B (en) * | 2008-01-03 | 2013-02-01 | Delta Electronics Inc | Assembled circuit and electronic component |
US8247895B2 (en) * | 2010-01-08 | 2012-08-21 | International Business Machines Corporation | 4D device process and structure |
US8845769B2 (en) * | 2010-01-19 | 2014-09-30 | Zeropoint Clean Tech, Inc. | Downdraft gasifier with improved stability |
US8330262B2 (en) | 2010-02-02 | 2012-12-11 | International Business Machines Corporation | Processes for enhanced 3D integration and structures generated using the same |
KR101796116B1 (en) | 2010-10-20 | 2017-11-10 | 삼성전자 주식회사 | Semiconductor device, memory module and memory system having the same and operating method thereof |
TWI415232B (en) * | 2010-11-15 | 2013-11-11 | Walton Advanced Eng Inc | Screen type storage device |
US8598048B2 (en) | 2011-07-27 | 2013-12-03 | Texas Instruments Incorporated | Integrated circuit package including a direct connect pad, a blind via, and a bond pad electrically coupled to the direct connect pad |
ITVI20120060A1 (en) | 2012-03-19 | 2013-09-20 | St Microelectronics Srl | ELECTRONIC SYSTEM HAVING INCREASED CONNECTION THROUGH THE USE OF HORIZONTAL AND VERTICAL COMMUNICATION CHANNELS |
ITTO20120477A1 (en) | 2012-05-31 | 2013-12-01 | St Microelectronics Srl | NETWORK OF ELECTRONIC DEVICES FIXED TO A FLEXIBLE SUPPORT AND RELATIVE COMMUNICATION METHOD |
CN203225947U (en) * | 2013-03-28 | 2013-10-02 | 富士康(昆山)电脑接插件有限公司 | Printed circuit board assembly |
US9204547B2 (en) * | 2013-04-17 | 2015-12-01 | The United States of America as Represented by the Secratary of the Army | Non-planar printed circuit board with embedded electronic components |
US9994741B2 (en) | 2015-12-13 | 2018-06-12 | International Business Machines Corporation | Enhanced adhesive materials and processes for 3D applications |
KR102505441B1 (en) * | 2018-02-19 | 2023-03-03 | 삼성전기주식회사 | Printed Circuit Board and Electronic Device having the same |
CN110828411A (en) * | 2019-11-19 | 2020-02-21 | 江苏上达电子有限公司 | Multi-chip bonding post-bending type packaging structure and method |
CN113727510B (en) * | 2020-05-25 | 2022-10-21 | 宏启胜精密电子(秦皇岛)有限公司 | Method for manufacturing circuit board |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411122A (en) | 1966-01-13 | 1968-11-12 | Ibm | Electrical resistance element and method of fabricating |
US3436604A (en) | 1966-04-25 | 1969-04-01 | Texas Instruments Inc | Complex integrated circuit array and method for fabricating same |
US3654394A (en) | 1969-07-08 | 1972-04-04 | Gordon Eng Co | Field effect transistor switch, particularly for multiplexing |
US3746934A (en) | 1971-05-06 | 1973-07-17 | Siemens Ag | Stack arrangement of semiconductor chips |
US3766439A (en) | 1972-01-12 | 1973-10-16 | Gen Electric | Electronic module using flexible printed circuit board with heat sink means |
US3772776A (en) | 1969-12-03 | 1973-11-20 | Thomas & Betts Corp | Method of interconnecting memory plane boards |
US3983547A (en) | 1974-06-27 | 1976-09-28 | International Business Machines - Ibm | Three-dimensional bubble device |
US4079511A (en) | 1976-07-30 | 1978-03-21 | Amp Incorporated | Method for packaging hermetically sealed integrated circuit chips on lead frames |
US4288841A (en) | 1979-09-20 | 1981-09-08 | Bell Telephone Laboratories, Incorporated | Double cavity semiconductor chip carrier |
US4406508A (en) | 1981-07-02 | 1983-09-27 | Thomas & Betts Corporation | Dual-in-line package assembly |
US4466183A (en) | 1982-05-03 | 1984-08-21 | National Semiconductor Corporation | Integrated circuit packaging process |
US4513368A (en) | 1981-05-22 | 1985-04-23 | Data General Corporation | Digital data processing system having object-based logical memory addressing and self-structuring modular memory |
US4587596A (en) | 1984-04-09 | 1986-05-06 | Amp Incorporated | High density mother/daughter circuit board connector |
US4645944A (en) | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4696525A (en) | 1985-12-13 | 1987-09-29 | Amp Incorporated | Socket for stacking integrated circuit packages |
US4712129A (en) | 1983-12-12 | 1987-12-08 | Texas Instruments Incorporated | Integrated circuit device with textured bar cover |
US4722691A (en) | 1986-02-03 | 1988-02-02 | General Motors Corporation | Header assembly for a printed circuit board |
US4733461A (en) | 1984-12-28 | 1988-03-29 | Micro Co., Ltd. | Method of stacking printed circuit boards |
US4758875A (en) | 1981-04-30 | 1988-07-19 | Hitachi, Ltd. | Resin encapsulated semiconductor device |
US4763188A (en) | 1986-08-08 | 1988-08-09 | Thomas Johnson | Packaging system for multiple semiconductor devices |
US4821007A (en) | 1987-02-06 | 1989-04-11 | Tektronix, Inc. | Strip line circuit component and method of manufacture |
US4823234A (en) | 1985-08-16 | 1989-04-18 | Dai-Ichi Seiko Co., Ltd. | Semiconductor device and its manufacture |
US4833568A (en) | 1988-01-29 | 1989-05-23 | Berhold G Mark | Three-dimensional circuit component assembly and method corresponding thereto |
US4839717A (en) | 1986-12-19 | 1989-06-13 | Fairchild Semiconductor Corporation | Ceramic package for high frequency semiconductor devices |
US4862249A (en) | 1987-04-17 | 1989-08-29 | Xoc Devices, Inc. | Packaging system for stacking integrated circuits |
US4891789A (en) | 1988-03-03 | 1990-01-02 | Bull Hn Information Systems, Inc. | Surface mounted multilayer memory printed circuit board |
US4911643A (en) | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US4953060A (en) | 1989-05-05 | 1990-08-28 | Ncr Corporation | Stackable integrated circuit chip package with improved heat removal |
US4956694A (en) | 1988-11-04 | 1990-09-11 | Dense-Pac Microsystems, Inc. | Integrated circuit chip stacking |
US4983533A (en) | 1987-10-28 | 1991-01-08 | Irvine Sensors Corporation | High-density electronic modules - process and product |
US4985703A (en) | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US5012323A (en) | 1989-11-20 | 1991-04-30 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
US5016138A (en) | 1987-10-27 | 1991-05-14 | Woodman John K | Three dimensional integrated circuit package |
US5034350A (en) | 1987-09-23 | 1991-07-23 | Sgs Thomson Microelectronics S.R.L. | Semiconductor device package with dies mounted on both sides of the central pad of a metal frame |
US5041015A (en) | 1990-03-30 | 1991-08-20 | Cal Flex, Inc. | Electrical jumper assembly |
US5041902A (en) | 1989-12-14 | 1991-08-20 | Motorola, Inc. | Molded electronic package with compression structures |
US5057903A (en) | 1989-07-17 | 1991-10-15 | Microelectronics And Computer Technology Corporation | Thermal heat sink encapsulated integrated circuit |
US5064782A (en) | 1989-04-17 | 1991-11-12 | Sumitomo Electric Industries, Ltd. | Method of adhesively and hermetically sealing a semiconductor package lid by scrubbing |
US5068708A (en) | 1989-10-02 | 1991-11-26 | Advanced Micro Devices, Inc. | Ground plane for plastic encapsulated integrated circuit die packages |
US5081067A (en) | 1989-02-10 | 1992-01-14 | Fujitsu Limited | Ceramic package type semiconductor device and method of assembling the same |
US5099393A (en) | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5104820A (en) | 1989-07-07 | 1992-04-14 | Irvine Sensors Corporation | Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting |
US5117282A (en) | 1990-10-29 | 1992-05-26 | Harris Corporation | Stacked configuration for integrated circuit devices |
US5122862A (en) | 1989-03-15 | 1992-06-16 | Ngk Insulators, Ltd. | Ceramic lid for sealing semiconductor element and method of manufacturing the same |
US5138430A (en) | 1991-06-06 | 1992-08-11 | International Business Machines Corporation | High performance versatile thermally enhanced IC chip mounting |
US5138434A (en) | 1991-01-22 | 1992-08-11 | Micron Technology, Inc. | Packaging for semiconductor logic devices |
US5159434A (en) | 1990-02-01 | 1992-10-27 | Hitachi, Ltd. | Semiconductor device having a particular chip pad structure |
US5158912A (en) | 1991-04-09 | 1992-10-27 | Digital Equipment Corporation | Integral heatsink semiconductor package |
US5159535A (en) | 1987-03-11 | 1992-10-27 | International Business Machines Corporation | Method and apparatus for mounting a flexible film semiconductor chip carrier on a circuitized substrate |
US5168926A (en) | 1991-09-25 | 1992-12-08 | Intel Corporation | Heat sink design integrating interface material |
US5198888A (en) | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US5198965A (en) | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5214307A (en) | 1991-07-08 | 1993-05-25 | Micron Technology, Inc. | Lead frame for semiconductor devices having improved adhesive bond line control |
US5219794A (en) | 1991-03-14 | 1993-06-15 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of fabricating same |
US5222014A (en) | 1992-03-02 | 1993-06-22 | Motorola, Inc. | Three-dimensional multi-chip pad array carrier |
US5224023A (en) | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5239198A (en) | 1989-09-06 | 1993-08-24 | Motorola, Inc. | Overmolded semiconductor device having solder ball and edge lead connective structure |
US5241454A (en) | 1992-01-22 | 1993-08-31 | International Business Machines Corporation | Mutlilayered flexible circuit package |
US5240588A (en) | 1991-08-27 | 1993-08-31 | Nec Corporation | Method for electroplating the lead pins of a semiconductor device pin grid array package |
US5243133A (en) | 1992-02-18 | 1993-09-07 | International Business Machines, Inc. | Ceramic chip carrier with lead frame or edge clip |
US5247423A (en) | 1992-05-26 | 1993-09-21 | Motorola, Inc. | Stacking three dimensional leadless multi-chip module and method for making the same |
US5252857A (en) | 1991-08-05 | 1993-10-12 | International Business Machines Corporation | Stacked DCA memory chips |
US5252855A (en) | 1990-10-25 | 1993-10-12 | Mitsubishi Denki Kabushiki Kaisha | Lead frame having an anodic oxide film coating |
US5259770A (en) | 1992-03-19 | 1993-11-09 | Amp Incorporated | Impedance controlled elastomeric connector |
US5261068A (en) | 1990-05-25 | 1993-11-09 | Dell Usa L.P. | Dual path memory retrieval system for an interleaved dynamic RAM memory unit |
US5262927A (en) | 1992-02-07 | 1993-11-16 | Lsi Logic Corporation | Partially-molded, PCB chip carrier package |
US5276418A (en) | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5281852A (en) | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5289062A (en) | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5313097A (en) | 1992-11-16 | 1994-05-17 | International Business Machines, Corp. | High density memory module |
US5347428A (en) | 1992-12-03 | 1994-09-13 | Irvine Sensors Corporation | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
US5357478A (en) | 1990-10-05 | 1994-10-18 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit device including a plurality of cell array blocks |
US5361228A (en) | 1992-04-30 | 1994-11-01 | Fuji Photo Film Co., Ltd. | IC memory card system having a common data and address bus |
US5375041A (en) | 1992-12-02 | 1994-12-20 | Intel Corporation | Ra-tab array bump tab tape based I.C. package |
US5386341A (en) | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5394303A (en) | 1992-09-11 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device |
US5397916A (en) | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5428190A (en) | 1993-07-02 | 1995-06-27 | Sheldahl, Inc. | Rigid-flex board with anisotropic interconnect and method of manufacture |
US5438224A (en) | 1992-04-23 | 1995-08-01 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
US5448511A (en) | 1994-06-01 | 1995-09-05 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
US5477082A (en) | 1994-01-11 | 1995-12-19 | Exponential Technology, Inc. | Bi-planar multi-chip module |
US5484959A (en) | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US5502333A (en) | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
US5514907A (en) | 1995-03-21 | 1996-05-07 | Simple Technology Incorporated | Apparatus for stacking semiconductor chips |
US5523695A (en) | 1994-08-26 | 1996-06-04 | Vlsi Technology, Inc. | Universal test socket for exposing the active surface of an integrated circuit in a die-down package |
US5523619A (en) | 1993-11-03 | 1996-06-04 | International Business Machines Corporation | High density memory structure |
US5572065A (en) | 1992-06-26 | 1996-11-05 | Staktek Corporation | Hermetically sealed ceramic integrated circuit heat dissipating package |
US5588205A (en) | 1995-01-24 | 1996-12-31 | Staktek Corporation | Method of manufacturing a high density integrated circuit module having complex electrical interconnect rails |
US5594275A (en) | 1993-11-18 | 1997-01-14 | Samsung Electronics Co., Ltd. | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
US5612570A (en) | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
US5642055A (en) | 1990-02-14 | 1997-06-24 | Particle Interconnect, Inc. | Electrical interconnect using particle enhanced joining of metal surfaces |
US5646446A (en) | 1995-12-22 | 1997-07-08 | Fairchild Space And Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
US5654877A (en) | 1991-08-15 | 1997-08-05 | Staktek Corporation | Lead-on-chip integrated circuit apparatus |
US5657537A (en) | 1995-05-30 | 1997-08-19 | General Electric Company | Method for fabricating a stack of two dimensional circuit modules |
US5677569A (en) | 1994-10-27 | 1997-10-14 | Samsung Electronics Co., Ltd. | Semiconductor multi-package stack |
US5729894A (en) | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
US5744827A (en) | 1995-11-28 | 1998-04-28 | Samsung Electronics Co., Ltd. | Three dimensional stack package device having exposed coupling lead portions and vertical interconnection elements |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04209562A (en) | 1990-12-06 | 1992-07-30 | Fujitsu Ltd | Module structure of semiconductor package |
DE19626126C2 (en) * | 1996-06-28 | 1998-04-16 | Fraunhofer Ges Forschung | Method for forming a spatial chip arrangement and spatial chip arrangement |
US6225688B1 (en) * | 1997-12-11 | 2001-05-01 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US6014316A (en) * | 1997-06-13 | 2000-01-11 | Irvine Sensors Corporation | IC stack utilizing BGA contacts |
US5869353A (en) | 1997-11-17 | 1999-02-09 | Dense-Pac Microsystems, Inc. | Modular panel stacking process |
US5926369A (en) * | 1998-01-22 | 1999-07-20 | International Business Machines Corporation | Vertically integrated multi-chip circuit package with heat-sink support |
US6172874B1 (en) * | 1998-04-06 | 2001-01-09 | Silicon Graphics, Inc. | System for stacking of integrated circuit packages |
-
2000
- 2000-01-13 US US09/482,294 patent/US6262895B1/en not_active Expired - Lifetime
-
2001
- 2001-04-19 US US09/838,773 patent/US6473308B2/en not_active Ceased
-
2004
- 2004-10-26 US US10/974,046 patent/USRE41039E1/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411122A (en) | 1966-01-13 | 1968-11-12 | Ibm | Electrical resistance element and method of fabricating |
US3436604A (en) | 1966-04-25 | 1969-04-01 | Texas Instruments Inc | Complex integrated circuit array and method for fabricating same |
US3654394A (en) | 1969-07-08 | 1972-04-04 | Gordon Eng Co | Field effect transistor switch, particularly for multiplexing |
US3772776A (en) | 1969-12-03 | 1973-11-20 | Thomas & Betts Corp | Method of interconnecting memory plane boards |
US3746934A (en) | 1971-05-06 | 1973-07-17 | Siemens Ag | Stack arrangement of semiconductor chips |
US3766439A (en) | 1972-01-12 | 1973-10-16 | Gen Electric | Electronic module using flexible printed circuit board with heat sink means |
US3983547A (en) | 1974-06-27 | 1976-09-28 | International Business Machines - Ibm | Three-dimensional bubble device |
US4079511A (en) | 1976-07-30 | 1978-03-21 | Amp Incorporated | Method for packaging hermetically sealed integrated circuit chips on lead frames |
US4288841A (en) | 1979-09-20 | 1981-09-08 | Bell Telephone Laboratories, Incorporated | Double cavity semiconductor chip carrier |
US4758875A (en) | 1981-04-30 | 1988-07-19 | Hitachi, Ltd. | Resin encapsulated semiconductor device |
US4513368A (en) | 1981-05-22 | 1985-04-23 | Data General Corporation | Digital data processing system having object-based logical memory addressing and self-structuring modular memory |
US4406508A (en) | 1981-07-02 | 1983-09-27 | Thomas & Betts Corporation | Dual-in-line package assembly |
US4466183A (en) | 1982-05-03 | 1984-08-21 | National Semiconductor Corporation | Integrated circuit packaging process |
US4645944A (en) | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4712129A (en) | 1983-12-12 | 1987-12-08 | Texas Instruments Incorporated | Integrated circuit device with textured bar cover |
US4587596A (en) | 1984-04-09 | 1986-05-06 | Amp Incorporated | High density mother/daughter circuit board connector |
US4733461A (en) | 1984-12-28 | 1988-03-29 | Micro Co., Ltd. | Method of stacking printed circuit boards |
US4823234A (en) | 1985-08-16 | 1989-04-18 | Dai-Ichi Seiko Co., Ltd. | Semiconductor device and its manufacture |
US4696525A (en) | 1985-12-13 | 1987-09-29 | Amp Incorporated | Socket for stacking integrated circuit packages |
US4722691A (en) | 1986-02-03 | 1988-02-02 | General Motors Corporation | Header assembly for a printed circuit board |
US4763188A (en) | 1986-08-08 | 1988-08-09 | Thomas Johnson | Packaging system for multiple semiconductor devices |
US4839717A (en) | 1986-12-19 | 1989-06-13 | Fairchild Semiconductor Corporation | Ceramic package for high frequency semiconductor devices |
US4821007A (en) | 1987-02-06 | 1989-04-11 | Tektronix, Inc. | Strip line circuit component and method of manufacture |
US5159535A (en) | 1987-03-11 | 1992-10-27 | International Business Machines Corporation | Method and apparatus for mounting a flexible film semiconductor chip carrier on a circuitized substrate |
US4862249A (en) | 1987-04-17 | 1989-08-29 | Xoc Devices, Inc. | Packaging system for stacking integrated circuits |
US5034350A (en) | 1987-09-23 | 1991-07-23 | Sgs Thomson Microelectronics S.R.L. | Semiconductor device package with dies mounted on both sides of the central pad of a metal frame |
US5016138A (en) | 1987-10-27 | 1991-05-14 | Woodman John K | Three dimensional integrated circuit package |
US4983533A (en) | 1987-10-28 | 1991-01-08 | Irvine Sensors Corporation | High-density electronic modules - process and product |
US5198888A (en) | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US4833568A (en) | 1988-01-29 | 1989-05-23 | Berhold G Mark | Three-dimensional circuit component assembly and method corresponding thereto |
US4985703A (en) | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US4891789A (en) | 1988-03-03 | 1990-01-02 | Bull Hn Information Systems, Inc. | Surface mounted multilayer memory printed circuit board |
US4911643A (en) | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US4956694A (en) | 1988-11-04 | 1990-09-11 | Dense-Pac Microsystems, Inc. | Integrated circuit chip stacking |
US5276418A (en) | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5081067A (en) | 1989-02-10 | 1992-01-14 | Fujitsu Limited | Ceramic package type semiconductor device and method of assembling the same |
US5122862A (en) | 1989-03-15 | 1992-06-16 | Ngk Insulators, Ltd. | Ceramic lid for sealing semiconductor element and method of manufacturing the same |
US5064782A (en) | 1989-04-17 | 1991-11-12 | Sumitomo Electric Industries, Ltd. | Method of adhesively and hermetically sealing a semiconductor package lid by scrubbing |
US4953060A (en) | 1989-05-05 | 1990-08-28 | Ncr Corporation | Stackable integrated circuit chip package with improved heat removal |
US5104820A (en) | 1989-07-07 | 1992-04-14 | Irvine Sensors Corporation | Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting |
US5057903A (en) | 1989-07-17 | 1991-10-15 | Microelectronics And Computer Technology Corporation | Thermal heat sink encapsulated integrated circuit |
US5239198A (en) | 1989-09-06 | 1993-08-24 | Motorola, Inc. | Overmolded semiconductor device having solder ball and edge lead connective structure |
US5068708A (en) | 1989-10-02 | 1991-11-26 | Advanced Micro Devices, Inc. | Ground plane for plastic encapsulated integrated circuit die packages |
US5012323A (en) | 1989-11-20 | 1991-04-30 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
US5041902A (en) | 1989-12-14 | 1991-08-20 | Motorola, Inc. | Molded electronic package with compression structures |
US5159434A (en) | 1990-02-01 | 1992-10-27 | Hitachi, Ltd. | Semiconductor device having a particular chip pad structure |
US5642055A (en) | 1990-02-14 | 1997-06-24 | Particle Interconnect, Inc. | Electrical interconnect using particle enhanced joining of metal surfaces |
US5041015A (en) | 1990-03-30 | 1991-08-20 | Cal Flex, Inc. | Electrical jumper assembly |
US5261068A (en) | 1990-05-25 | 1993-11-09 | Dell Usa L.P. | Dual path memory retrieval system for an interleaved dynamic RAM memory unit |
US5357478A (en) | 1990-10-05 | 1994-10-18 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit device including a plurality of cell array blocks |
US5252855A (en) | 1990-10-25 | 1993-10-12 | Mitsubishi Denki Kabushiki Kaisha | Lead frame having an anodic oxide film coating |
US5117282A (en) | 1990-10-29 | 1992-05-26 | Harris Corporation | Stacked configuration for integrated circuit devices |
US5138434A (en) | 1991-01-22 | 1992-08-11 | Micron Technology, Inc. | Packaging for semiconductor logic devices |
US5219794A (en) | 1991-03-14 | 1993-06-15 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of fabricating same |
US5289062A (en) | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5099393A (en) | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5158912A (en) | 1991-04-09 | 1992-10-27 | Digital Equipment Corporation | Integral heatsink semiconductor package |
US5138430A (en) | 1991-06-06 | 1992-08-11 | International Business Machines Corporation | High performance versatile thermally enhanced IC chip mounting |
US5214307A (en) | 1991-07-08 | 1993-05-25 | Micron Technology, Inc. | Lead frame for semiconductor devices having improved adhesive bond line control |
US5252857A (en) | 1991-08-05 | 1993-10-12 | International Business Machines Corporation | Stacked DCA memory chips |
US5654877A (en) | 1991-08-15 | 1997-08-05 | Staktek Corporation | Lead-on-chip integrated circuit apparatus |
US5240588A (en) | 1991-08-27 | 1993-08-31 | Nec Corporation | Method for electroplating the lead pins of a semiconductor device pin grid array package |
US5168926A (en) | 1991-09-25 | 1992-12-08 | Intel Corporation | Heat sink design integrating interface material |
US5397916A (en) | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5281852A (en) | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5198965A (en) | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5241454A (en) | 1992-01-22 | 1993-08-31 | International Business Machines Corporation | Mutlilayered flexible circuit package |
US5262927A (en) | 1992-02-07 | 1993-11-16 | Lsi Logic Corporation | Partially-molded, PCB chip carrier package |
US5224023A (en) | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5243133A (en) | 1992-02-18 | 1993-09-07 | International Business Machines, Inc. | Ceramic chip carrier with lead frame or edge clip |
US5222014A (en) | 1992-03-02 | 1993-06-22 | Motorola, Inc. | Three-dimensional multi-chip pad array carrier |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5259770A (en) | 1992-03-19 | 1993-11-09 | Amp Incorporated | Impedance controlled elastomeric connector |
US5438224A (en) | 1992-04-23 | 1995-08-01 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
US5361228A (en) | 1992-04-30 | 1994-11-01 | Fuji Photo Film Co., Ltd. | IC memory card system having a common data and address bus |
US5247423A (en) | 1992-05-26 | 1993-09-21 | Motorola, Inc. | Stacking three dimensional leadless multi-chip module and method for making the same |
US5572065A (en) | 1992-06-26 | 1996-11-05 | Staktek Corporation | Hermetically sealed ceramic integrated circuit heat dissipating package |
US5729894A (en) | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
US5394303A (en) | 1992-09-11 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device |
US5313097A (en) | 1992-11-16 | 1994-05-17 | International Business Machines, Corp. | High density memory module |
US5375041A (en) | 1992-12-02 | 1994-12-20 | Intel Corporation | Ra-tab array bump tab tape based I.C. package |
US5347428A (en) | 1992-12-03 | 1994-09-13 | Irvine Sensors Corporation | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
US5484959A (en) | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US5631193A (en) | 1992-12-11 | 1997-05-20 | Staktek Corporation | High density lead-on-package fabrication method |
US5428190A (en) | 1993-07-02 | 1995-06-27 | Sheldahl, Inc. | Rigid-flex board with anisotropic interconnect and method of manufacture |
US5386341A (en) | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5523619A (en) | 1993-11-03 | 1996-06-04 | International Business Machines Corporation | High density memory structure |
US5594275A (en) | 1993-11-18 | 1997-01-14 | Samsung Electronics Co., Ltd. | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
US5477082A (en) | 1994-01-11 | 1995-12-19 | Exponential Technology, Inc. | Bi-planar multi-chip module |
US5502333A (en) | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
US5448511A (en) | 1994-06-01 | 1995-09-05 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
US5523695A (en) | 1994-08-26 | 1996-06-04 | Vlsi Technology, Inc. | Universal test socket for exposing the active surface of an integrated circuit in a die-down package |
US5677569A (en) | 1994-10-27 | 1997-10-14 | Samsung Electronics Co., Ltd. | Semiconductor multi-package stack |
US5588205A (en) | 1995-01-24 | 1996-12-31 | Staktek Corporation | Method of manufacturing a high density integrated circuit module having complex electrical interconnect rails |
US5514907A (en) | 1995-03-21 | 1996-05-07 | Simple Technology Incorporated | Apparatus for stacking semiconductor chips |
US5612570A (en) | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
US5657537A (en) | 1995-05-30 | 1997-08-19 | General Electric Company | Method for fabricating a stack of two dimensional circuit modules |
US5744827A (en) | 1995-11-28 | 1998-04-28 | Samsung Electronics Co., Ltd. | Three dimensional stack package device having exposed coupling lead portions and vertical interconnection elements |
US5646446A (en) | 1995-12-22 | 1997-07-08 | Fairchild Space And Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
Non-Patent Citations (13)
Title |
---|
1993 Proceedings, 42nd Electronic Components & Technology Conference, May 18-20, 1992. |
Chip Scale Review Online-An Independent Journal Dedicated to the Advancement of Chip-Scale Electrons. (Website 9 pages) Fjelstad, Joseph, Pacific Consultants L.L.C., Published Jan. 2001 on Internet. |
Denise-Pac Microsystems, Breaking Space Barriers, 3-D Technology 1993. |
Die Products: Ideal IC Packaging for Demanding Applications-Advanced packaging that's no bigger than the die itself brings together high performance and high reliabliity with small size and low cost. (Website 3 pages with 2 figures) Larry Gilg and Chris Windsor. Dec. 23, 2002. Published on Internet. |
Flexible Printed Circuit Technology-A Versatile Interconnection Option. (Website 2 pages) Fjelstad, Joseph. Dec. 3, 2002. |
Flexible Thinking Examining the Flexible Circuit Tapes. (Website 2 pages) Fjelstad, Joseph., Published Apr. 20, 2000 on Internet. |
IBM Technical Disclosure Bulletin, vol. 20, No. 11A, Apr. 1978. |
IBM Technical Disclosure Bulletin, vol. 23, No. 12, May 1981. |
IBM Technical Disclosure Bulletin, vol. 32, No. 38, Aug. 1989. |
Orthogonal Chip Mount-A 3D Hybrid Wafer Scale Integration, International Electron Device Meeting IEDM Technical Digest, Washington, D.C., Dec. 6-9, 1987. |
Research Disclosure, Organic Card Device Carrier, 31318, May 1990, No. 313. |
Ron Bauer, Intel. "Stacked-CSP Delivers Flexibility, Reliablilty, and Space-Saving Capabilities", vol. 3, Spring 2002. Published on the Internet. |
Tessera Introduces uZ ä-Ball Stacked Memory Package for Computing and Portable Electronic Products Joyce Smaragdis, Tessera Public Relations, Sandy Skees, MCA PR (www.tessera.com/news_events/press_coverage.cfm); 2 figures that purport to be directed to the uZä-Bali Stacked Memory p Package Published Jul. 17, 2002 in San Jose, Ca. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170215288A1 (en) * | 2015-08-27 | 2017-07-27 | Boe Technology Group Co., Ltd. | Flexible display panel and method of manufacturing the same, and flexible display apparatus |
US10306766B2 (en) * | 2015-08-27 | 2019-05-28 | Boe Technology Group Co., Ltd. | Flexible display panel and method of manufacturing the same, and flexible display apparatus |
Also Published As
Publication number | Publication date |
---|---|
US6262895B1 (en) | 2001-07-17 |
US6473308B2 (en) | 2002-10-29 |
US20010015487A1 (en) | 2001-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41039E1 (en) | Stackable chip package with flex carrier | |
US6908792B2 (en) | Chip stack with differing chip package types | |
US7193310B2 (en) | Stacking system and method | |
US6014316A (en) | IC stack utilizing BGA contacts | |
US6028352A (en) | IC stack utilizing secondary leadframes | |
US6878571B2 (en) | Panel stacking of BGA devices to form three-dimensional modules | |
US5754408A (en) | Stackable double-density integrated circuit assemblies | |
US6426240B2 (en) | Stackable flex circuit chip package and method of making same | |
KR20010078712A (en) | Chip stack and method of making same | |
JP2004235606A (en) | Electronic module having canopy-type carriers | |
US6437433B1 (en) | CSP stacking technology using rigid/flex construction | |
US6660561B2 (en) | Method of assembling a stackable integrated circuit chip | |
JPH02239651A (en) | Semiconductor device and mounting method thereof | |
JPH06302347A (en) | Ic socket and contact therefor | |
US7585700B2 (en) | Ball grid array package stack | |
US20030113998A1 (en) | Flex tab for use in stacking packaged integrated circuit chips | |
US20020190367A1 (en) | Slice interconnect structure | |
US20030002267A1 (en) | I/O interface structure | |
JP2003017617A (en) | Flexibly connecting circuit substrate, flexible circuit substrate and semiconductor device using the same | |
JPH0538880U (en) | Semiconductor mounting structure | |
KR20030059453A (en) | Method for manufacturing bga type stack package by using alignment pin | |
KR20050011470A (en) | stacked package | |
EP0820643A1 (en) | Integrated circuit packages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: ENTORIAN GP LLC, TEXAS Free format text: MERGER;ASSIGNOR:ENTORIAN TECHNOLOGIES L.P.;REEL/FRAME:029195/0048 Effective date: 20100714 Owner name: ENTORIAN TECHNOLOGIES INC., TEXAS Free format text: MERGER;ASSIGNOR:ENTORIAN GP LLC;REEL/FRAME:029195/0114 Effective date: 20100714 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: DENSE-PAC MICROSYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORTHUN, JOHN A.;REEL/FRAME:029389/0548 Effective date: 20000107 Owner name: ENTORIAN TECHNOLOGIES L.P., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:STAKTEK GROUP, L.P.;REEL/FRAME:029395/0958 Effective date: 20080229 Owner name: OVID DATA CO. LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENTORIAN TECHNOLOGIES INC.;REEL/FRAME:029389/0672 Effective date: 20121031 Owner name: DPAC TECHNOLOGIES CORP., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:DENSE-PAC MICROSYSTEMS, INC.;REEL/FRAME:029395/0945 Effective date: 20010810 |
|
AS | Assignment |
Owner name: STAKTEK GROUP L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DPAC TECHNOLOGIES CORP. (FORMERLY KNOWN AS DENSE-PAC MICROSYSTEMS, INC.);REEL/FRAME:029412/0093 Effective date: 20040609 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: TAMIRAS PER PTE. LTD., LLC, DELAWARE Free format text: MERGER;ASSIGNOR:OVID DATA CO. LLC;REEL/FRAME:037373/0481 Effective date: 20150903 |