WO2004048445A1 - Dendrimer-type macromolecular structure comprising an encapsulated dye and applications - Google Patents
Dendrimer-type macromolecular structure comprising an encapsulated dye and applications Download PDFInfo
- Publication number
- WO2004048445A1 WO2004048445A1 PCT/ES2003/000593 ES0300593W WO2004048445A1 WO 2004048445 A1 WO2004048445 A1 WO 2004048445A1 ES 0300593 W ES0300593 W ES 0300593W WO 2004048445 A1 WO2004048445 A1 WO 2004048445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dendrimer
- dye
- macromolecular structure
- solvent
- structure according
- Prior art date
Links
- 239000000412 dendrimer Substances 0.000 claims abstract description 93
- 229920000736 dendritic polymer Polymers 0.000 claims abstract description 93
- 239000002904 solvent Substances 0.000 claims abstract description 51
- 239000000975 dye Substances 0.000 claims description 121
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 23
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 229920000333 poly(propyleneimine) Polymers 0.000 claims description 11
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 claims description 9
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 claims description 7
- 229940043267 rhodamine b Drugs 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical group 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 2
- 239000002798 polar solvent Substances 0.000 claims description 2
- 150000003862 amino acid derivatives Chemical group 0.000 claims 1
- 125000000539 amino acid group Chemical group 0.000 claims 1
- 125000000524 functional group Chemical group 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- -1 for example Chemical compound 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 229960005190 phenylalanine Drugs 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011877 solvent mixture Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical group CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 208000000913 Kidney Calculi Diseases 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029148 Nephrolithiasis Diseases 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010351 charge transfer process Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000002993 phenylalanine derivatives Chemical class 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0001—Post-treatment of organic pigments or dyes
- C09B67/0004—Coated particulate pigments or dyes
- C09B67/0008—Coated particulate pigments or dyes with organic coatings
- C09B67/0011—Coated particulate pigments or dyes with organic coatings containing amine derivatives, e.g. polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/002—Dendritic macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/005—Dendritic macromolecules
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0001—Post-treatment of organic pigments or dyes
- C09B67/0004—Coated particulate pigments or dyes
- C09B67/0008—Coated particulate pigments or dyes with organic coatings
- C09B67/0013—Coated particulate pigments or dyes with organic coatings with polymeric coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0097—Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
Definitions
- the invention relates to a macromolecular structure of a dendrimer nature constituted by a dendrimer and, at least, a dye encapsulated within said dendrimer, and its applications, for example, in dye lasers.
- a dye laser is a device formed by (i) an active medium, consisting of a solution of an organic dye dissolved in an organic solvent, for example, an alcohol, or aqueous; (ii) an optical cavity, in which the active medium is placed, which usually comprises an opaque mirror and a semi-transparent mirror, partially transmitting the output laser emission; and (iii) a source of energy for photonic pumping, located external to the optical cavity, in order to pump the active medium to cause the atoms to pass from their initial energy state to an excited state.
- the organic dyes commonly used in dye lasers are relatively large, fluorescent, organic compounds that contain a high number of cyclic structures, for example, Bengal Rose, Congo Red or Rhodamine B.
- the dye laser allows electromagnetic radiation to be converted. of a given wavelength at another tunable wavelength in a specific region of the spectrum, determined by the dye material, so that the dye is chosen based on the wavelength of the emission to be obtained.
- Dye lasers have numerous applications in different technical sectors. In medicine they are used, for example, in treatments of dermatological, vascular or pigmented lesions, in the treatment of tumors that have a specific absorption wavelength, in photodynamic therapy (PDT) and in the destruction of kidney stones through the waves of shock generated by short pulses.
- PDT photodynamic therapy
- dye lasers has numerous advantages, among which is the fact that the preparation of the active medium, as it is a liquid medium, lacks the difficulties of preparing a perfect homogeneous solid, without defects. However, they also have important limitations.
- the main limitation of currently known and marketed dye lasers is that the use of a particular dye, for example, Rhodamine B, provides a very small range of laser emission wavelength. This emission wavelength, obtained by using that dye, cannot be altered by the effect of the solvent, so if it is desired to obtain a laser emission in a different wavelength range it is necessary to change the dye and / or employ very expensive optical elements, for example, frequency mixers at the laser output.
- dendrimers are three-dimensional tree-shaped macromolecules, developed in the mid-1980s (from Brabander-van der Berg, EMM; Meijer, EW. Angew. Chem. Int. Ed. Engl., 1993, 32: 1308 ; Jansen, JFGA, of Brabander-van der Berg, EMM, Meijer, EW, Science, 1994, 266: 1226), widely used in numerous sectors, for example, in the development of catalysts (Zhao, M., et al, J. Am. Chem. Soc. 1998, 120: 4877; Balogh, L.
- An object of this invention is to provide an alternative method for modulating the emission frequency of a dye used in a dye laser.
- This objective can be achieved through the use of macromolecular structures of a dendrimer nature that contain an encapsulated dye inside which, when used in dye lasers, as components of the active medium in the presence of a solvent, can produce a laser emission in a wide range of wavelengths, without having to substitute the dye for another dye but simply by modifying the polarity of the solvent in which said macromolecular structure of dendrimer nature is found that contains the encapsulated dye inside.
- the polarity of the solvent in which said macromolecular structure is found is the factor that will modulate the wavelength of the laser emission and not the change of dye.
- a process such as that developed by the present invention allows to modulate, in a simple and reliable way, the frequency of emission of dyes used in dye lasers.
- the invention relates to a macromolecular structure of a dendrimer nature constituted by a dendrimer and, at least, an encapsulated dye inside said dendrimer.
- the invention in another aspect, relates to a composition comprising said macromolecular structure of dendrimer nature and a solvent.
- the invention in another aspect, relates to a method for modulating the emission frequency of a dye used in a dye laser comprising the use of a composition comprising said macromolecular structure of dendrimer nature and a solvent.
- Figure 1 is a graph depicting the fluorescence of the Rose Bengal dye in solution (without being encapsulated in any dendrimer), at an approximate concentration of 10 "6 M, in solvents with different polarities: ethanol, dichloromethane and benzene.
- Figure 2 is a graph depicting the fluorescence of the Bengal Rose dye encapsulated in a fifth generation polypropyleneimine dendrimer, at an approximate concentration of 10 "6 M, in solvents with different polarities: ethanol, dichloromethane and pentane.
- the invention relates to a macromolecular structure of dendrimer nature, hereinafter macromolecular structure of the invention, comprising a dendrimer and a dye encapsulated within said dendrimer.
- the dendrimers are three-dimensional macromolecules of arborescent construction constituted by (i) a central core, (ii) an inner dendritic structure (branches), and (iii) an outer surface (terminal groups). These macromolecules are constructed by repeating units called "branches,” in concentric growth layers surrounding the central core, and terminated by terminal groups. Each growth layer is called "generation.” More than 50 families of different compositions with more than 200 different terminal groups have been described (Dvornic, PR et al., Polymer Prepr. 1999, 40: 408).
- any suitable dendrimer can be used as constituent dendrimer of the macromolecular structure of the invention, in particular dendrimers suitable for laser technology, that is, they do not interfere with laser emission processes.
- dendrimers suitable for laser technology There are commercially available dendrimers, supplied by different manufacturers (Aldrich, DSM, etc.) that differ in the nucleus, the branches, the number of generations and / or the terminal groups, which can be used for the implementation of the, present invention
- said dendrimer is a dendrimer of a polyalkylamine, such as a polypropyleneimine dendrimer [poly (1, 3-trimethyleneimine)].
- the number of branch layers (generation) of the dendrimer to be used in the present invention may vary within a wide range.
- the dendrimer is a fourth or fifth generation dendrimer.
- the terminal group present in the constituent dendrimer of the macromolecular structure of the invention can be any group capable of closing the structure and preventing the encapsulated dye from going outside it.
- any group capable of preventing the outflow of the dye encapsulated in the dendrimer would be appropriate for the purposes of the present invention.
- said terminal group is a group derived from an amino acid, natural or synthetic, such as an amino acid with aromatic moieties, for example, phenylalanine, tyrosine, etc., a derivative of an amino acid, for example, an ester derived from the amino acid L-phenylalanine, such as, for example, the N-tBOC-L-phenylalanine hydroxysuccinimide ester, etc .; or a bulky compound capable of reacting with an amino group, for example, an acid, an acid chloride, an aldehyde, etc.
- the constituent dendrimer of the macromolecular structure of the invention is a fifth generation polypropyleneimine dendrimer, with terminal phenyl groups derived from a phenylalanine derivative which they give the macromolecular structure of the invention a shell-like arrangement that prevents the dye from exiting said structure.
- the macromolecular structure of the invention may contain one or more dyes.
- the presence of two or more different dyes in the same dendrimer can lead to charge transfer processes and other photochemical processes that can also be modulated by the effect of quantum confinement. Therefore, in a particular embodiment, the macromolecular structure of the invention contains a single dye, while in another particular embodiment, said macromolecular structure contains a mixture of two, three or more different dyes. Virtually any dye can be used in the macromolecular structures of the invention.
- the dye or dyes encapsulated in the macromolecular structures of the invention is a dye or mixture of dyes of the type used in dye lasers.
- said dye is selected from Bengal Rose, Congo Red, Rhodamine B and mixtures thereof.
- the dendrimer / dye molar ratio existing in the macromolecular structure of the invention can vary over a wide range depending, among other factors, on the size of the dye molecule and the size (volume) of the dendrimer cavity.
- the dendrimer / dye molar ratio is between 2 and 6, preferably 4.
- the dendrimer / dye molar ratio will vary over a wide range, in the one that really cannot be defined defined limits.
- the interactions between the dendrimer and the dye are non-binding in nature (van der Waals type).
- the macromolecular structure of the invention can be obtained by a method comprising contacting the dendrimer and the dye, in the presence of a solvent and a base, and subsequently adding a compound that provides the terminal groups. Finally, the solvent is removed by conventional methods to obtain the macromolecular structure of the invention.
- a solvent in which the dendrimer and the dye are soluble, or at least dispersible, can be used for performing said process.
- said solvent is a halogenated solvent, for example, dichloromethane.
- any suitable base can be used, generally an organic base, such as an amine, preferably, a tertiary amine, for example, triethylamine, etc., or a cyclic amine, for example, pyridine, etc.
- the amounts of dendrimer and dye are adjusted based on the molar ratio of dendrimer / dye that is desired to be obtained taking into account the characteristics of both products.
- the mixture of the dendrimer and the dye, in the presence of the solvent and the base, is maintained at an appropriate temperature and for a period of time to allow encapsulation of the dye in the dendrimer.
- the temperature can vary within a wide range; however, in general, the temperature chosen will depend on the solvent used and the thermal stability of the dye to be incorporated in the dendrimer.
- the macromolecular structure of the invention is obtained at a temperature between room temperature and the boiling temperature of the solvent. At a higher temperature, the dendrimer / dye molar ratio can be increased.
- Example 1 describes the preparation of macromolecular structures comprising fifth generation polypropyleneimine dendrimers, encapsulating different dyes, and having terminal phenyl groups that constitute a kind of shell that completely precludes the flow of matter between both sides of the same.
- the invention in another aspect, relates to a composition
- a composition comprising a macromolecular structure of the invention and a solvent.
- Any solvent in which the macromolecular structure of the invention is soluble or, at least, dispersible, can be used in the preparation of the composition provided by this invention.
- said solvent is selected from a polar solvent, an apolar solvent and mixtures thereof.
- said solvent is selected from water, a hydrocarbon, optionally halogenated, for example, an aliphatic or aromatic hydrocarbon, optionally halogenated, such as pentane, dichloromethane, benzene, etc .; an alcohol, such as methanol, ethanol, etc .; and its mixtures
- a hydrocarbon optionally halogenated, for example, an aliphatic or aromatic hydrocarbon, optionally halogenated, such as pentane, dichloromethane, benzene, etc .
- an alcohol such as methanol, ethanol, etc .
- its mixtures As will be described in detail below, the polarity of the solvent significantly influences the degree of confinement of the dye inside the dendrimer and, therefore, allows varying the frequency of dye emission, which has important implications in the sector of Laser technology, among others.
- the possibility of obtaining polarities controlled by solvent mixtures introduces an extraordinary added value to this invention, since solutions of a certain dye can be prepared in a suitable solvent
- the dye molecules housed inside the dendrimer constituting the macromolecular structure of the invention can undergo major changes due to the solvent in which the dye-dendrimer system is found.
- the effect of an apolar solvent for example, benzene, yields an association of macromolecular structures of the invention in addition to a compression of the structure of each such macromolecular structure.
- This situation is completely reversible when the solvent used is of a more polar nature, for example, ethanol, dichloromethane, etc.
- This compression implies a notable reduction in the space in which the dye molecules are inside the dendrimer, resulting in the appearance of quantum confinement effects of its electronic structure.
- the macromolecular structures of the invention which comprise dyes confined in dendrimers, in laser technology applications, it is no longer necessary to change the dye of the laser to work in a certain frequency range. If the necessary working range is very far from the normal range of use of the dye, simply by changing the polarity of the solvent used it is possible to modify the emission range without using different dyes for each frequency range.
- Conventional dye lasers require the preparation of a solution of the dye in an appropriate solvent, for example, water, methanol, ethanol, etc. When the dye is excited, it emits laser radiation in a certain, very narrow range of frequencies. It depends exclusively on the type of dye.
- Example 2 illustrates the application of the foregoing in the case of the Rose Bengal dye incorporated in a fifth generation polypropyleneimine dendrimer. Results similar to those described above, even with much more pronounced effects, have been obtained with other dyes such as Congo Red or Rhodamine B.
- the invention in another aspect, relates to a method for modulating the emission frequency of a dye used in a dye laser comprising the use of the composition provided by the present invention comprising a macromolecular structure of the invention and a solvent.
- the polarity of the solvent can be established so that pumping said composition with a radiation source results in a laser emission over a wide range of frequencies.
- the invention also relates to a laser frequency modulation device comprising the use of macromolecular structures of the invention. Such devices may be intended for any application that requires the control of the laser emission wavelength.
- the fifth generation dendrimer resulting from the synthesis process consists of terminal propyleneimine branches that, in the fifth generation, end up in benzene rings (phenyl groups). This last generation of the dendrimer, with benzene end groups, gives the molecule a shell-like structure that completely precludes the flow of matter between both sides of it.
- the number of dye molecules (Rose Bengal) incorporated in the fifth generation dendrimer is 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Lasers (AREA)
Abstract
The invention relates to a dendrimer-type macromolecular structure comprising a dendrimer with at least one dye encapsulated therein. The aforementioned macromolecular structures can be used in laser technology in order to alter the emission range of a dye, thereby altering the polarity of the solvent. The invention is suitable for use in laser technology and, in particular, with dye lasers.
Description
ESTRUCTURA MACROMOLECULAR DE NATURALEZA DENDRÍMERA QUE COMPRENDE UN COLORANTE ENCAPSULADO Y APLICACIONESMACROMOLECULAR STRUCTURE OF DENDRÍMERA NATURE THAT INCLUDES AN ENCAPSULATED COLOR AND APPLICATIONS
CAMPO DE LA INVENCIÓN La invención se relaciona con una estructura macromolecular de naturaleza dendrímera constituida por un dendrímero y, al menos, un colorante encapsulado dentro de dicho dendrímero, y a sus aplicaciones, por ejemplo, en láseres de colorante.FIELD OF THE INVENTION The invention relates to a macromolecular structure of a dendrimer nature constituted by a dendrimer and, at least, a dye encapsulated within said dendrimer, and its applications, for example, in dye lasers.
ANTECEDENTES DE LA INVENCIÓN Un láser de colorante es un dispositivo formado por (i) un medio activo, constituido por una solución de un colorante orgánico disuelta en un disolvente orgánico, por ejemplo, un alcohol, o acuoso; (ii) una cavidad óptica, en la que se coloca el medio activo, que habitualmente comprende un espejo opaco y otro semitransparente, parcialmente transmisor de la emisión láser de salida; y (iii) una fuente de energía para el bombeo fotónico, de localización externa a la cavidad óptica, con el fin de bombear el medio activo para provocar que los átomos pasen de su estado de energía inicial a un estado excitado. Los colorantes orgánicos habitualmente utilizados en los láseres de colorante son compuestos orgánicos, fluorescentes, relativamente grandes, que contienen un elevado número de estructuras cíclicas, por ejemplo, Rosa de Bengala, Rojo Congo o Rhodamina B. El láser de colorante permite convertir la radiación electromagnética de una longitud de onda determinada en otra longitud de onda sintonizable en una región específica del espectro, determinada por el material colorante, de manera que el colorante se elige en función de la longitud de onda de la emisión que se desea obtener.BACKGROUND OF THE INVENTION A dye laser is a device formed by (i) an active medium, consisting of a solution of an organic dye dissolved in an organic solvent, for example, an alcohol, or aqueous; (ii) an optical cavity, in which the active medium is placed, which usually comprises an opaque mirror and a semi-transparent mirror, partially transmitting the output laser emission; and (iii) a source of energy for photonic pumping, located external to the optical cavity, in order to pump the active medium to cause the atoms to pass from their initial energy state to an excited state. The organic dyes commonly used in dye lasers are relatively large, fluorescent, organic compounds that contain a high number of cyclic structures, for example, Bengal Rose, Congo Red or Rhodamine B. The dye laser allows electromagnetic radiation to be converted. of a given wavelength at another tunable wavelength in a specific region of the spectrum, determined by the dye material, so that the dye is chosen based on the wavelength of the emission to be obtained.
Los láseres de colorante presentan numerosas aplicaciones en distintos sectores técnicos. En medicina se utilizan, por ejemplo, en tratamientos de lesiones dermatológicas, vasculares o pigmentadas, en el tratamiento de tumores que tienen una longitud de onda de absorción específica, en terapia fotodinámica (PDT) y en la destrucción de cálculos renales mediante las ondas de choque generadas por pulsos cortos.Dye lasers have numerous applications in different technical sectors. In medicine they are used, for example, in treatments of dermatological, vascular or pigmented lesions, in the treatment of tumors that have a specific absorption wavelength, in photodynamic therapy (PDT) and in the destruction of kidney stones through the waves of shock generated by short pulses.
El empleo de láseres de colorante presenta numerosas ventajas, entre las que se encuentra el hecho de que la preparación del medio activo, al tratarse de un medio líquido, carece de las dificultades propias de la preparación de un sólido homogéneo perfecto, sin
defectos. No obstante, también presentan importantes limitaciones. La principal limitación de los láseres de colorante conocidos y comercializados en la actualidad radica en que el empleo de un colorante concreto, por ejemplo, Rhodamina B, proporciona un margen muy reducido de longitud de onda de emisión láser. Esta longitud de onda de emisión, obtenida mediante el empleo de ese colorante, no se puede alterar por efecto del disolvente, por lo que si se desea obtener una emisión láser en un intervalo distinto de longitud de onda es necesario cambiar el colorante y/o emplear elementos ópticos muy costosos, por ejemplo, mezcladores de frecuencias a la salida del láser.The use of dye lasers has numerous advantages, among which is the fact that the preparation of the active medium, as it is a liquid medium, lacks the difficulties of preparing a perfect homogeneous solid, without defects. However, they also have important limitations. The main limitation of currently known and marketed dye lasers is that the use of a particular dye, for example, Rhodamine B, provides a very small range of laser emission wavelength. This emission wavelength, obtained by using that dye, cannot be altered by the effect of the solvent, so if it is desired to obtain a laser emission in a different wavelength range it is necessary to change the dye and / or employ very expensive optical elements, for example, frequency mixers at the laser output.
Por otra parte, los dendrímeros son macromoléculas tridimensionales de construcción arborescente, desarrolladas a mediados de los años ochenta (de Brabander-van der Berg, E.M.M.; Meijer, E. W.. Angew. Chem. Int. Ed. Engl., 1993, 32:1308; Jansen, J. F. G. A., de Brabander-van der Berg, E.M.M., Meijer, E. W., Science, 1994, 266:1226), ampliamente utilizados en numerosos sectores, por ejemplo, en la elaboración de catalizadores (Zhao, M., et al, J. Am. Chem. Soc. 1998, 120:4877; Balogh, L. & Tomalia, D.A., Aldrichimica Acta 1998, 120:7355), modificadores de la reología (de Brabender, E.M.M. et al., Polymer News 1997, 22:6), sistemas de transporte y liberación de fármacos (Wilbur, D.S:, et al., Bioconjugate Chem., 1998, 9:813), etc.On the other hand, dendrimers are three-dimensional tree-shaped macromolecules, developed in the mid-1980s (from Brabander-van der Berg, EMM; Meijer, EW. Angew. Chem. Int. Ed. Engl., 1993, 32: 1308 ; Jansen, JFGA, of Brabander-van der Berg, EMM, Meijer, EW, Science, 1994, 266: 1226), widely used in numerous sectors, for example, in the development of catalysts (Zhao, M., et al, J. Am. Chem. Soc. 1998, 120: 4877; Balogh, L. & Tomalia, DA, Aldrichimica Acta 1998, 120: 7355), rheology modifiers (de Brabender, EMM et al., Polymer News 1997, 22 : 6), drug transport and release systems (Wilbur, DS :, et al., Bioconjugate Chem., 1998, 9: 813), etc.
COMPENDIO DE LA INVENCIÓN Un objetivo de esta invención radica en proporcionar un procedimiento alternativo para modular la frecuencia de emisión de un colorante empleado en un láser de colorante.SUMMARY OF THE INVENTION An object of this invention is to provide an alternative method for modulating the emission frequency of a dye used in a dye laser.
Este objetivo puede alcanzarse mediante el empleo de unas estructuras macromoleculares de naturaleza dendrímera que contienen un colorante encapsulado en su interior que, cuando se utilizan en láseres de colorante, como componentes del medio activo en presencia de un disolvente, pueden producir una emisión láser en un amplio intervalo de longitudes de onda, sin necesidad de tener que sustituir el colorante por otro colorante sino simplemente modificando la polaridad del disolvente en el que se encuentra dicha estructura macromolecular de naturaleza dendrímera que contiene el colorante encapsulado en su interior. De este modo, la polaridad del disolvente en el que se encuentra dicha estructura macromolecular es el factor que va a modular la longitud de onda de la emisión láser y no el cambio de colorante.
Un procedimiento como el desarrollado por la presente invención permite modular, de manera sencilla y fiable, la frecuencia de emisión de colorantes utilizados en láseres de colorante.This objective can be achieved through the use of macromolecular structures of a dendrimer nature that contain an encapsulated dye inside which, when used in dye lasers, as components of the active medium in the presence of a solvent, can produce a laser emission in a wide range of wavelengths, without having to substitute the dye for another dye but simply by modifying the polarity of the solvent in which said macromolecular structure of dendrimer nature is found that contains the encapsulated dye inside. Thus, the polarity of the solvent in which said macromolecular structure is found is the factor that will modulate the wavelength of the laser emission and not the change of dye. A process such as that developed by the present invention allows to modulate, in a simple and reliable way, the frequency of emission of dyes used in dye lasers.
Por tanto, en un aspecto, la invención se relaciona con una estructura macromolecular de naturaleza dendrímera constituida por un dendrímero y, al menos, un colorante encapsulado en el interior de dicho dendrímero.Therefore, in one aspect, the invention relates to a macromolecular structure of a dendrimer nature constituted by a dendrimer and, at least, an encapsulated dye inside said dendrimer.
En otro aspecto, la invención se relaciona con una composición que comprende dicha estructura macromolecular de naturaleza dendrímera y un disolvente.In another aspect, the invention relates to a composition comprising said macromolecular structure of dendrimer nature and a solvent.
En otro aspecto, la invención se relaciona con un procedimiento para modular la frecuencia de emisión de un colorante empleado en un láser de colorante que comprende el empleo de una composición que comprende dicha estructura macromolecular de naturaleza dendrímera y un disolvente.In another aspect, the invention relates to a method for modulating the emission frequency of a dye used in a dye laser comprising the use of a composition comprising said macromolecular structure of dendrimer nature and a solvent.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
La Figura 1 es una gráfica que representa la fluorescencia del colorante Rosa de Bengala en disolución (sin estar encapsulado en ningún dendrímero), a una concentración aproximada 10"6 M, en disolventes con distinta polaridad: etanol, diclorometano y benceno.Figure 1 is a graph depicting the fluorescence of the Rose Bengal dye in solution (without being encapsulated in any dendrimer), at an approximate concentration of 10 "6 M, in solvents with different polarities: ethanol, dichloromethane and benzene.
La Figura 2 es una gráfica que representa la fluorescencia del colorante Rosa de Bengala encapsulado en un dendrímero de polipropilenimina de quinta generación, a una concentración aproximada de 10"6 M, en disolventes con distinta polaridad: etanol, diclorometano y pentano.Figure 2 is a graph depicting the fluorescence of the Bengal Rose dye encapsulated in a fifth generation polypropyleneimine dendrimer, at an approximate concentration of 10 "6 M, in solvents with different polarities: ethanol, dichloromethane and pentane.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN En un aspecto, la invención se relaciona con una estructura macromolecular de naturaleza dendrímera, en adelante estructura macromolecular de la invención, que comprende un dendrímero y un colorante encapsulado en el interior de dicho dendrímero.DETAILED DESCRIPTION OF THE INVENTION In one aspect, the invention relates to a macromolecular structure of dendrimer nature, hereinafter macromolecular structure of the invention, comprising a dendrimer and a dye encapsulated within said dendrimer.
Los dendrímeros son macromoléculas tridimensionales de construcción arborescente constituidos por (i) un núcleo central, (ii) una estructura dendrítica interior (ramas), y (iii) una superficie exterior (grupos terminales). Estas macromoléculas están construidas por unidades de repetición denominadas "ramas", en capas de crecimiento concéntricas que rodean al
núcleo central, y terminadas por unos grupos terminales. A cada capa de crecimiento se le denomina "generación". Se han descrito más de 50 familias de composiciones diferentes con más de 200 grupos terminales diferentes (Dvornic, P.R. et al., Polymer Prepr. 1999, 40:408).The dendrimers are three-dimensional macromolecules of arborescent construction constituted by (i) a central core, (ii) an inner dendritic structure (branches), and (iii) an outer surface (terminal groups). These macromolecules are constructed by repeating units called "branches," in concentric growth layers surrounding the central core, and terminated by terminal groups. Each growth layer is called "generation." More than 50 families of different compositions with more than 200 different terminal groups have been described (Dvornic, PR et al., Polymer Prepr. 1999, 40: 408).
Una revisión sobre los dendrímeros ha sido elaborada por Tomalia, D.A. (Tomalia, D.A., Aldrichimica Acta 1993, 26:91).A review of dendrimers has been prepared by Tomalia, D.A. (Tomalia, D.A., Aldrichimica Acta 1993, 26:91).
Como dendrímero constituyente de la estructura macromolecular de la invención puede utilizarse cualquier dendrímero apropiado, en particular, dendrímeros aptos para tecnología láser, es decir, que no interfieren en procesos de emisión láser. Existen dendrímeros comercialmente disponibles, suministrados por distintos fabricantes (Aldrich, DSM, etc.) que se diferencian en el núcleo, las ramas, el número de generaciones y/o los grupos terminales, que pueden ser utilizados para la puesta en práctica de la, presente invención. No obstante, en una realización particular, dicho dendrímero es un dendrímero de una polialquilamina, tal como un dendrímero de polipropilenimina [poli(l,3- trimetilenimina)] . El número de capas de ramas (generación) del dendrímero a utilizar en la presente invención puede variar dentro de un amplio intervalo. Sin embargo, en una realización particular, el dendrímero es un dendrímero de cuarta o quinta generación.Any suitable dendrimer can be used as constituent dendrimer of the macromolecular structure of the invention, in particular dendrimers suitable for laser technology, that is, they do not interfere with laser emission processes. There are commercially available dendrimers, supplied by different manufacturers (Aldrich, DSM, etc.) that differ in the nucleus, the branches, the number of generations and / or the terminal groups, which can be used for the implementation of the, present invention However, in a particular embodiment, said dendrimer is a dendrimer of a polyalkylamine, such as a polypropyleneimine dendrimer [poly (1, 3-trimethyleneimine)]. The number of branch layers (generation) of the dendrimer to be used in the present invention may vary within a wide range. However, in a particular embodiment, the dendrimer is a fourth or fifth generation dendrimer.
El grupo terminal presente en el dendrímero constituyente de la estructura macromolecular de la invención puede ser cualquier grupo con capacidad para cerrar la estructura y evitar que el colorante encapsulado salga al exterior de la misma. Por tanto, prácticamente cualquier grupo capaz de impedir la salida del colorante encapsulado en el dendrímero sería apropiado para los fines de la presente invención. No obstante, en una realización particular, dicho grupo terminal es un grupo derivado de un aminoácido, natural o sintético, tal como un aminoácido con restos aromáticos, por ejemplo, fenilalanina, tirosina, etc., un derivado de un aminoácido, por ejemplo, un éster derivado del aminoácido L- fenilalanina, tal como, por ejemplo, el éster N-tBOC-L-fenilalanina hidroxisuccinimida, etc.; o un compuesto voluminoso capaz de reaccionar con un grupo amino, por ejemplo, un ácido, un cloruro de ácido, un aldehido, etc.The terminal group present in the constituent dendrimer of the macromolecular structure of the invention can be any group capable of closing the structure and preventing the encapsulated dye from going outside it. Thus, virtually any group capable of preventing the outflow of the dye encapsulated in the dendrimer would be appropriate for the purposes of the present invention. However, in a particular embodiment, said terminal group is a group derived from an amino acid, natural or synthetic, such as an amino acid with aromatic moieties, for example, phenylalanine, tyrosine, etc., a derivative of an amino acid, for example, an ester derived from the amino acid L-phenylalanine, such as, for example, the N-tBOC-L-phenylalanine hydroxysuccinimide ester, etc .; or a bulky compound capable of reacting with an amino group, for example, an acid, an acid chloride, an aldehyde, etc.
En una realización particular, el dendrímero constituyente de la estructura macromolecular de la invención es un dendrímero de polipropilenimina, de quinta generación, con grupos fenilo terminales procedentes de un derivado de fenilalanina que
confieren a la estructura macromolecular de la invención una disposición a modo de coraza que impide la salida del colorante al exterior de dicha estructura.In a particular embodiment, the constituent dendrimer of the macromolecular structure of the invention is a fifth generation polypropyleneimine dendrimer, with terminal phenyl groups derived from a phenylalanine derivative which they give the macromolecular structure of the invention a shell-like arrangement that prevents the dye from exiting said structure.
La estructura macromolecular de la invención puede contener uno o más colorantes. La presencia de dos o más colorantes distintos en el mismo dendrímero puede dar lugar a procesos de transferencia de carga y a otros procesos fotoquímicos que también pueden ser modulados por efecto de confinamiento cuántico. Por tanto, en una realización particular, la estructura macromolecular de la invención contiene un único colorante, mientras que en otra realización particular, dicha estructura macromolecular contiene una mezcla de dos, tres o más colorantes diferentes. Prácticamente cualquier colorante puede ser utilizado en las estructuras macromoleculares de la invención. Preferentemente, el colorante o colorantes encapsulados en las estructuras macromoleculares de la invención es un colorante o mezcla de colorantes del tipo utilizado en los láseres de colorante. En una realización particular, dicho colorante se selecciona entre Rosa de Bengala, Rojo Congo, Rhodamina B y sus mezclas. La relación molar dendrímero/colorante existente en la estructura macromolecular de la invención puede variar dentro de un amplio intervalo dependiendo, entre otros factores, del tamaño de la molécula de colorante y del tamaño (volumen) de la cavidad del dendrímero. En una realización particular, cuando el dendrímero es un dendrímero de polipropilenimina de quinta generación y el colorante es Rosa de Bengala, Rojo Congo o Rhodamina B, la relación molar dendrímero/colorante está comprendida entre 2 y 6, preferentemente 4. No obstante, si se emplean colorantes de dimensiones más pequeñas que las de los colorantes previamente mencionados o si se emplean dendrímeros que generan unas cavidades internas más grandes que las de dicho dendrímero de polipropilenimina de quinta generación, la relación molar dendrímero/colorante variará en un amplio intervalo, en el que realmente no se pueden establecer unos límites definidos.The macromolecular structure of the invention may contain one or more dyes. The presence of two or more different dyes in the same dendrimer can lead to charge transfer processes and other photochemical processes that can also be modulated by the effect of quantum confinement. Therefore, in a particular embodiment, the macromolecular structure of the invention contains a single dye, while in another particular embodiment, said macromolecular structure contains a mixture of two, three or more different dyes. Virtually any dye can be used in the macromolecular structures of the invention. Preferably, the dye or dyes encapsulated in the macromolecular structures of the invention is a dye or mixture of dyes of the type used in dye lasers. In a particular embodiment, said dye is selected from Bengal Rose, Congo Red, Rhodamine B and mixtures thereof. The dendrimer / dye molar ratio existing in the macromolecular structure of the invention can vary over a wide range depending, among other factors, on the size of the dye molecule and the size (volume) of the dendrimer cavity. In a particular embodiment, when the dendrimer is a fifth generation polypropyleneimine dendrimer and the dye is Bengal Rose, Congo Red or Rhodamine B, the dendrimer / dye molar ratio is between 2 and 6, preferably 4. However, if dyes of smaller dimensions than those of the dyes mentioned above are used or if dendrimers are used which generate internal cavities larger than those of said fifth generation polypropyleneimine dendrimer, the dendrimer / dye molar ratio will vary over a wide range, in the one that really cannot be defined defined limits.
Dentro de la estructura macromolecular de la invención, las interacciones existentes entre el dendrímero y el colorante son de naturaleza no enlazante (tipo van der Waals).Within the macromolecular structure of the invention, the interactions between the dendrimer and the dye are non-binding in nature (van der Waals type).
La estructura macromolecular de la invención puede obtenerse mediante un procedimiento que comprende poner en contacto el dendrímero y el colorante, en presencia de un disolvente y una base, y, posteriormente, añadir un compuesto que proporciona los grupos terminales. Finalmente, el disolvente se retira por métodos convencionales para
obtener la estructura macromolecular de la invención. Prácticamente cualquier disolvente en el que el dendrímero y el colorante sean solubles, o al menos, dispersables, puede ser utilizado para la realización de dicho procedimiento. En una realización particular, dicho disolvente es un disolvente halogenado, por ejemplo, diclorometano. Como base puede utilizarse cualquier base apropiada, generalmente una base orgánica, tal como una amina, preferentemente, una amina terciaria, por ejemplo, trietilamina, etc., o una amina cíclica, por ejemplo, piridina, etc. Las cantidades de dendrímero y colorante se ajustan en función de la relación molar dendrímero/colorante que se desea obtener teniendo en cuenta las características de ambos productos. La mezcla del dendrímero y el colorante, en presencia del disolvente y la base, se mantiene a una temperatura y durante un periodo de tiempo apropiados para permitir la encapsulación del colorante en el dendrímero. La temperatura puede variar dentro de un amplio intervalo; no obstante, en general, la temperatura elegida dependerá del disolvente empleado y de la estabilidad térmica del colorante a incorporar en el dendrímero. En una realización particular, la obtención de la estructura macromolecular de la invención se realiza a una temperatura comprendida entre la temperatura ambiente y la temperatura de ebullición del disolvente. A mayor temperatura, la relación molar dendrímero/colorante puede verse incrementada. En el Ejemplo 1 se describe la preparación de unas estructuras macromoleculares que comprenden dendrímeros de polipropilenimina de quinta generación, que encapsulan distintos colorantes, y que poseen grupos fenilo terminales que constituyen una especie de coraza que imposibilita completamente el flujo de materia entre ambos lados de la misma.The macromolecular structure of the invention can be obtained by a method comprising contacting the dendrimer and the dye, in the presence of a solvent and a base, and subsequently adding a compound that provides the terminal groups. Finally, the solvent is removed by conventional methods to obtain the macromolecular structure of the invention. Virtually any solvent in which the dendrimer and the dye are soluble, or at least dispersible, can be used for performing said process. In a particular embodiment, said solvent is a halogenated solvent, for example, dichloromethane. As the base any suitable base can be used, generally an organic base, such as an amine, preferably, a tertiary amine, for example, triethylamine, etc., or a cyclic amine, for example, pyridine, etc. The amounts of dendrimer and dye are adjusted based on the molar ratio of dendrimer / dye that is desired to be obtained taking into account the characteristics of both products. The mixture of the dendrimer and the dye, in the presence of the solvent and the base, is maintained at an appropriate temperature and for a period of time to allow encapsulation of the dye in the dendrimer. The temperature can vary within a wide range; however, in general, the temperature chosen will depend on the solvent used and the thermal stability of the dye to be incorporated in the dendrimer. In a particular embodiment, the macromolecular structure of the invention is obtained at a temperature between room temperature and the boiling temperature of the solvent. At a higher temperature, the dendrimer / dye molar ratio can be increased. Example 1 describes the preparation of macromolecular structures comprising fifth generation polypropyleneimine dendrimers, encapsulating different dyes, and having terminal phenyl groups that constitute a kind of shell that completely precludes the flow of matter between both sides of the same.
En otro aspecto, la invención se relaciona con una composición que comprende una estructura macromolecular de la invención y un disolvente. Nirtualmente cualquier disolvente en el que la estructura macromolecular de la invención sea soluble o, al menos, dispersable, puede ser utilizado en la elaboración de la composición proporcionada por esta invención. En una realización particular, dicho disolvente se selecciona entre un disolvente polar, un disolvente apolar y sus mezclas. En una realización concreta de esta invención, dicho disolvente se selecciona entre agua, un hidrocarburo, opcionalmente halogenado, por ejemplo, un hidrocarburo alifático o aromático, opcionalmente halogenados, tal como pentano, diclorometano, benceno, etc.; un alcohol, tal como, methanol, etanol, etc.; y sus
mezclas. Como se describirá de forma detallada más adelante, la polaridad del disolvente influye significativamente en el grado de confinamiento del colorante en el interior del dendrímero y, por tanto, permite variar la frecuencia de emisión del colorante, lo cual tiene importantes implicaciones en el sector de la tecnología láser, entre otros. De hecho, la posibilidad de obtener polaridades controladas mediante mezclas de disolventes introduce un valor añadido extraordinario a esta invención, pues se pueden preparar disoluciones de un determinado colorante en una mezcla adecuada de disolventes para obtener una emisión láser a una longitud de onda exacta.In another aspect, the invention relates to a composition comprising a macromolecular structure of the invention and a solvent. Any solvent in which the macromolecular structure of the invention is soluble or, at least, dispersible, can be used in the preparation of the composition provided by this invention. In a particular embodiment, said solvent is selected from a polar solvent, an apolar solvent and mixtures thereof. In a specific embodiment of this invention, said solvent is selected from water, a hydrocarbon, optionally halogenated, for example, an aliphatic or aromatic hydrocarbon, optionally halogenated, such as pentane, dichloromethane, benzene, etc .; an alcohol, such as methanol, ethanol, etc .; and its mixtures As will be described in detail below, the polarity of the solvent significantly influences the degree of confinement of the dye inside the dendrimer and, therefore, allows varying the frequency of dye emission, which has important implications in the sector of Laser technology, among others. In fact, the possibility of obtaining polarities controlled by solvent mixtures introduces an extraordinary added value to this invention, since solutions of a certain dye can be prepared in a suitable solvent mixture to obtain a laser emission at an exact wavelength.
Las moléculas de colorante alojadas en el interior del dendrímero constituyente de la estructura macromolecular de la invención pueden experimentar cambios importantes debido al disolvente en el que se encuentra el sistema colorante-dendrímero. En la estructura macromolecular de la invención, el efecto de un disolvente apolar, por ejemplo, benceno, rinde una asociación de estructuras macromoleculares de la invención además de una compresión de la estructura de cada una de tales estructuras macromoleculares. Esta situación es completamente reversible cuando el disolvente empleado es de naturaleza más polar, por ejemplo, etanol, diclorometano, etc. Esta compresión implica una reducción notable del espacio en el que se encuentran las moléculas de colorante dentro del dendrímero, dando lugar a la aparición de efectos de confinamiento cuántico de su estructura electrónica. Estos efectos han sido descritos experimentalmente en moléculas orgánicas incorporadas en materiales zeolíticos de dimensiones reducidas (Márquez, F.; García, H.; Palomares, E.; Fernández, L.; Corma, A. J. Am. Chem. Soc. 2000, 122, 6520-6521; Márquez, F.; Martí, V.; Palomares, E.; García, H.; Adam, W. J. Am. Chem. Soc. 2002, 124, 7264-7265). La reducción del espacio en el que se alojan las moléculas de colorante implica cambios importantes en éstas debido a las interacciones presentes entre ellas y la cavidad del dendrímero en la que se hospedan. Cuando estas interacciones son suficientemente fuertes, por ejemplo, cuando las dimensiones (tamaño) de la molécula de colorante están próximas a las de la cavidad del dendrímero, se observan alteraciones en los orbitales moleculares del huésped (molécula de colorante) dando lugar a cambios notables en las propiedades de emisión de éste. Concretamente, los cambios observados consisten en una disminución del gap HOMO-LUMO de las moléculas de colorante, lo que se traduce en una reducción de la energía de excitación S0 — > Si*. Esta reducción del "gap" (diferencia de energía entre los
estados So y Si*) implica una menor energía de excitación, y, por lo tanto, un desplazamiento batocrómico (hacia menor energía) de las frecuencias de emisión. Esta interpretación de los resultados espectroscópicos de moléculas confinadas está sólidamente fundamentada sobre predicciones teóricas realizadas hace ya varios años (Zicovich-Wilson, C. M.; Viruela, P.; Corma, A., J. Phys. Chem. 1994, 98, 10863-10870) y recientes simulaciones computacionales (Márquez, F.; Zicovich-Wilson, C. M.; Corma, A.; Palomares, E.; García H. J. Phys. Chem. B 2001, 105, 9973). En condiciones de confinamiento extremo, el desplazamiento observado puede llegar a ser muy importante (superior incluso a varias decenas de nanometros). Este desplazamiento claramente va a depender del tipo de disolvente en el que se encuentra la estructura macromolecular de la invención [sistema dendrímero/colorante]. Dependiendo de la polaridad del disolvente se puede variar a voluntad el grado de confinamiento del colorante y, por tanto, la frecuencia de emisión de éste.The dye molecules housed inside the dendrimer constituting the macromolecular structure of the invention can undergo major changes due to the solvent in which the dye-dendrimer system is found. In the macromolecular structure of the invention, the effect of an apolar solvent, for example, benzene, yields an association of macromolecular structures of the invention in addition to a compression of the structure of each such macromolecular structure. This situation is completely reversible when the solvent used is of a more polar nature, for example, ethanol, dichloromethane, etc. This compression implies a notable reduction in the space in which the dye molecules are inside the dendrimer, resulting in the appearance of quantum confinement effects of its electronic structure. These effects have been experimentally described in organic molecules incorporated in zeolitic materials of reduced dimensions (Márquez, F .; García, H .; Palomares, E .; Fernández, L .; Corma, AJ Am. Chem. Soc. 2000, 122, 6520-6521; Márquez, F .; Martí, V .; Palomares, E .; García, H .; Adam, WJ Am. Chem. Soc. 2002, 124, 7264-7265). The reduction of the space in which the dye molecules are housed implies important changes in them due to the interactions between them and the dendrimer cavity in which they are housed. When these interactions are strong enough, for example, when the dimensions (size) of the dye molecule are close to those of the dendrimer cavity, alterations in the molecular orbitals of the host (dye molecule) are observed resulting in notable changes in its emission properties. Specifically, the changes observed consist of a decrease in the HOMO-LUMO gap of the dye molecules, which translates into a reduction of excitation energy S 0 -> Si *. This reduction of the "gap" (energy difference between states So and Si *) implies a lower excitation energy, and, therefore, a batochromic shift (towards lower energy) of the emission frequencies. This interpretation of the spectroscopic results of confined molecules is solidly based on theoretical predictions made several years ago (Zicovich-Wilson, CM; Smallpox, P .; Corma, A., J. Phys. Chem. 1994, 98, 10863-10870 ) and recent computer simulations (Márquez, F .; Zicovich-Wilson, CM; Corma, A .; Palomares, E .; García HJ Phys. Chem. B 2001, 105, 9973). Under conditions of extreme confinement, the observed displacement can become very important (even more than several tens of nanometers). This displacement will clearly depend on the type of solvent in which the macromolecular structure of the invention is located [dendrimer / dye system]. Depending on the polarity of the solvent, the degree of confinement of the dye and, therefore, the frequency of emission thereof can be varied at will.
Por tanto, mediante el empleo de las estructuras macromoleculares de la invención, que comprenden colorantes confinados en dendrímeros, en aplicaciones de tecnología láser, ya no es necesario cambiar el colorante del láser para trabajar en un determinado intervalo de frecuencias. Si el intervalo de trabajo necesario se encuentra muy alejado del intervalo normal de uso del colorante, simplemente cambiando la polaridad del disolvente empleado es posible modificar el intervalo de emisión sin necesidad de emplear colorantes distintos para cada intervalo de frecuencias. Los láseres de colorante convencionales requieren la preparación de una disolución del colorante en un disolvente apropiado, por ejemplo, agua, metanol, etanol, etc.. Cuando el colorante es excitado, emite una radiación láser en un determinado intervalo, muy estrecho, de frecuencias que depende exclusivamente del tipo de colorante. Si se necesita otra frecuencia distinta a la producida por esa disolución, se tiene que recurrir al empleo de otro colorante diferente (en disolución). Sin embargo, mediante el empleo de las estructuras macromoleculares de la presente invención, con un único colorante, incorporado en un dendrímero, se puede obtener una radiación láser en un amplio intervalo de frecuencias sin más que modificando el disolvente (en concreto, la polaridad del disolvente) y sin necesidad de tener que sustituir el colorante, lo cual constituye una ventaja importante. Además, la posibilidad de obtener polaridades controladas mediante mezclas de disolventes (polares/apolares) introduce un valor añadido extraordinario a esta invención, pues se pueden
preparar disoluciones de un determinado colorante en una mezcla adecuada de disolventes para obtener una emisión láser a una longitud de onda exacta.Therefore, by using the macromolecular structures of the invention, which comprise dyes confined in dendrimers, in laser technology applications, it is no longer necessary to change the dye of the laser to work in a certain frequency range. If the necessary working range is very far from the normal range of use of the dye, simply by changing the polarity of the solvent used it is possible to modify the emission range without using different dyes for each frequency range. Conventional dye lasers require the preparation of a solution of the dye in an appropriate solvent, for example, water, methanol, ethanol, etc. When the dye is excited, it emits laser radiation in a certain, very narrow range of frequencies. It depends exclusively on the type of dye. If a frequency other than that produced by that solution is needed, the use of a different dye (in solution) must be used. However, by using the macromolecular structures of the present invention, with a single dye, incorporated into a dendrimer, laser radiation can be obtained over a wide range of frequencies without more than modifying the solvent (in particular, the polarity of the solvent) and without having to replace the dye, which constitutes an important advantage. In addition, the possibility of obtaining polarities controlled by solvent mixtures (polar / apolar) introduces an extraordinary added value to this invention, since they can be Prepare solutions of a certain dye in a suitable solvent mixture to obtain a laser emission at an exact wavelength.
El Ejemplo 2 ilustra la aplicación de lo expuesto anteriormente para el caso del colorante Rosa de Bengala incorporado en un dendrímero de polipropilenimina de quinta generación. Resultados similares a los anteriormente descritos, incluso con efectos mucho más acusados, han sido obtenidos con otros colorantes como Rojo Congo o Rhodamina B.Example 2 illustrates the application of the foregoing in the case of the Rose Bengal dye incorporated in a fifth generation polypropyleneimine dendrimer. Results similar to those described above, even with much more pronounced effects, have been obtained with other dyes such as Congo Red or Rhodamine B.
En otro aspecto, la invención se relaciona con un procedimiento para modular la frecuencia de emisión de un colorante empleado en un láser de colorante que comprende el empleo de la composición proporcionada por la presente invención que comprende una estructura macromolecular de la invención y un disolvente. La polaridad del disolvente puede establecerse de modo que al bombear dicha composición con una fuente de radiación se obtenga una emisión láser en un amplio intervalo de frecuencias. De esta manera, es posible modular la frecuencia de emisión de un colorante empleado en láseres de colorante sin más que modificando la polaridad del disolvente, por ejemplo, cambiando un disolvente por otro o añadiendo un disolvente o mezcla de disolventes de distintas polaridades, pero sin tener que sustituir el colorante, lo que permite ampliar el campo de utilización de tales colorantes para láseres de colorantes.In another aspect, the invention relates to a method for modulating the emission frequency of a dye used in a dye laser comprising the use of the composition provided by the present invention comprising a macromolecular structure of the invention and a solvent. The polarity of the solvent can be established so that pumping said composition with a radiation source results in a laser emission over a wide range of frequencies. In this way, it is possible to modulate the emission frequency of a dye used in dye lasers with no more than modifying the polarity of the solvent, for example, changing one solvent for another or adding a solvent or solvent mixture of different polarities, but without having to replace the dye, which allows to expand the range of use of such dyes for dye lasers.
La posibilidad de modificar la polaridad del disolvente en modo continuo, mediante mezclas, permite la construcción de dispositivos de modulación de las frecuencias láser de gran precisión. Por tanto, la invención también se relaciona con un dispositivo de modulación de frecuencias láser que comprende el empleo de estructuras macromoleculares de la invención. Dichos dispositivos pueden ir destinados a cualquier aplicación que requiera el control de la longitud de onda de emisión láser.The possibility of modifying the polarity of the solvent in continuous mode, by means of mixtures, allows the construction of high precision laser frequency modulation devices. Therefore, the invention also relates to a laser frequency modulation device comprising the use of macromolecular structures of the invention. Such devices may be intended for any application that requires the control of the laser emission wavelength.
EJEMPLOSEXAMPLES
En los siguientes ejemplos se describe la preparación de diversas estructuras macromoleculares de la invención compuestas por dendrímeros de quinta generación que incorporan distintos colorantes (Rosa de Bengala, Rojo Congo y Rodamina B) [Ejemplo 1], así como las características del dendrímero de quinta generación en presencia de Rosa de Bengala [Ejemplo 2].
El dendrímero tipo polipropilenimina de partida, así como los colorantes utilizados fueron obtenidos a partir de fuentes comerciales (DSM). El éster derivado del aminoácido L- fenilalanina (éster N-tBOC-L-fenilalanina hidroxisuccinimida) se preparó siguiendo procedimientos sintéticos generales. (Voge s, Textbook of Practical Organic Chemistry, Fifth Edition, John Wiley & Sons, Inc., New York, pag 784)The following examples describe the preparation of various macromolecular structures of the invention composed of fifth-generation dendrimers that incorporate different dyes (Rose Bengal, Congo Red and Rhodamina B) [Example 1], as well as the characteristics of the fifth-generation dendrimer in the presence of Rose Bengal [Example 2]. The starting polypropyleneimine type dendrimer, as well as the dyes used were obtained from commercial sources (DSM). The ester derived from the amino acid L-phenylalanine (N-tBOC-L-phenylalanine hydroxysuccinimide ester) was prepared following general synthetic procedures. (Voge s, Textbook of Practical Organic Chemistry, Fifth Edition, John Wiley & Sons, Inc., New York, page 784)
EJEMPLO 1EXAMPLE 1
Para la preparación de la caja dendrítica conteniendo el colorante (Rosa de Bengala, Rojo Congo o Rodamina B) encapsulado se procedió de la manera que se indica a continuación.For the preparation of the dendritic box containing the dye (Bengal Rose, Congo Red or Rhodamina B) encapsulated, proceed in the manner indicated below.
Se prepararon 50 mi de una solución de diclorometano conteniendo 10 mi de trietilamina, el colorante a incorporar (360 mg de Rosa de Bengala, 246 mg de Rojo Congo o 169 mg de Rodamina B) y 500 mg del dendrímero tipo polipropilenimina de quinta generación. La solución se agitó durante una noche a temperatura ambiente. A continuación, se añadieron 1,61 g del éster N-tBOC-L-fenilalanina hidroxisuccinimida y se dejó agitando a temperatura ambiente durante 24 horas. La solución se lavó con agua (3 x 300ml) y con una solución saturada de Na2CO3. La fase orgánica se secó con MgSO4 y se rotavaporó el disolvente para finalmente obtener la caja dendrítica conteniendo el colorante encapsulado. La caja dendrítica se purificó mediante diálisis hasta que no se detectó colorante libre por HPLC.50 ml of a dichloromethane solution containing 10 ml of triethylamine, the dye to be incorporated (360 mg of Rose Bengal, 246 mg of Congo Red or 169 mg of Rhodamine B) and 500 mg of the fifth generation polypropyleneimine dendrimer were prepared. The solution was stirred overnight at room temperature. Then, 1.61 g of the N-tBOC-L-phenylalanine hydroxysuccinimide ester was added and allowed to stir at room temperature for 24 hours. The solution was washed with water (3 x 300ml) and with a saturated solution of Na 2 CO 3 . The organic phase was dried with MgSO 4 and the solvent was rotary evaporated to finally obtain the dendritic box containing the encapsulated dye. The dendritic box was purified by dialysis until no free dye was detected by HPLC.
El dendrímero de quinta generación resultante del proceso de síntesis consta de ramificaciones de propilenimina terminales que, en la quinta generación, terminan en anillos de benceno (grupos fenilo). Esta última generación del dendrímero, con grupos terminales bencénicos, confiere a la molécula una estructura a modo de coraza que imposibilita completamente el flujo de materia entre ambos lados de ésta. El número de moléculas de colorante (Rosa de Bengala) incorporado en el dendrímero de quinta generación es de 4.The fifth generation dendrimer resulting from the synthesis process consists of terminal propyleneimine branches that, in the fifth generation, end up in benzene rings (phenyl groups). This last generation of the dendrimer, with benzene end groups, gives the molecule a shell-like structure that completely precludes the flow of matter between both sides of it. The number of dye molecules (Rose Bengal) incorporated in the fifth generation dendrimer is 4.
EJEMPLO 2EXAMPLE 2
Se realizó este ejemplo para evaluar el diferente comportamiento del colorante cuando se encuentra libre en disolución y cuando está incorporado en un dendrímero. Para ello, se analizó la fluorescencia del colorante Rosa de Bengala libre (en disolución), a una
concentración aproximada 10"6 M, en disolventes con distinta polaridad: etanol, diclorometano y benceno, así como la fluorescencia de dicho colorante encapsulado en un dendrímero de polipropilenimina de quinta generación, tal como el obtenido en el EjemploThis example was performed to evaluate the different behavior of the dye when it is free in solution and when it is incorporated into a dendrimer. For this, the fluorescence of the free Bengal Rose dye (in solution) was analyzed at Approximate concentration 10 "6 M, in solvents with different polarity: ethanol, dichloromethane and benzene, as well as the fluorescence of said dye encapsulated in a fifth generation polypropyleneimine dendrimer, such as that obtained in the Example
1, a una concentración aproximada de la estructura macromolecular 10" M, en disolventes con distinta polaridad: etanol, diclorometano y pentano.1, at an approximate concentration of the 10 " M macromolecular structure, in solvents with different polarities: ethanol, dichloromethane and pentane.
Los resultados obtenidos se muestran en las Figuras 1 y 2. Tal como se observa en dichas figuras, el comportamiento del colorante es claramente diferente cuando se encuentra en disolución o cuando está incorporado en el dendrímero. La fluorescencia del colorante en disolución presenta muy pocas variaciones con la polaridad del disolvente (Figura 1). Sin embargo, cuando este colorante se incorpora en el interior de las cavidades del dendrímero, el efecto del disolvente llega a ser muy importante en algunos casos (Figura 2). Así, en un medio muy apolar, tal como el pentano, el espectro de fluorescencia experimenta un desplazamiento batocró ico de 37 nm respecto a la fluorescencia observada en etanol. Este desplazamiento de la fluorescencia puede ser claramente modulado en función de la polaridad del disolvente elegido. De la misma forma que la fluorescencia (emisión espontánea) experimenta esta variación con la polaridad del disolvente, también la emisión láser (emisión estimulada) experimenta estos mismos cambios de frecuencia. Los parámetros de los que depende la variación de la frecuencia de emisión son función del grado de confinamiento del colorante incorporado en el dendrímero y de la polaridad del disolvente empleado. Ambos factores pueden ser modificados a voluntad y de esta forma, una única estructura macromolecular [colorante-dendrímero] puede ser empleado para abarcar un intervalo más amplio de frecuencias de emisión láser. Por otro lado, la posibilidad de modificar la polaridad del disolvente en modo continuo, mediante mezclas, permite la construcción de dispositivos de modulación de las frecuencias láser de gran precisión. Resultados similares a los anteriormente descritos, incluso con efectos mucho más acusados, han sido obtenidos con otros colorantes como Rojo Congo o Rodamina B.
The results obtained are shown in Figures 1 and 2. As observed in said figures, the behavior of the dye is clearly different when it is in solution or when it is incorporated into the dendrimer. The fluorescence of the dye in solution has very few variations with the polarity of the solvent (Figure 1). However, when this dye is incorporated into the dendrimer cavities, the effect of the solvent becomes very important in some cases (Figure 2). Thus, in a very nonpolar medium, such as pentane, the fluorescence spectrum undergoes a batochotic displacement of 37 nm with respect to the fluorescence observed in ethanol. This fluorescence shift can be clearly modulated based on the polarity of the chosen solvent. In the same way that fluorescence (spontaneous emission) experiences this variation with the polarity of the solvent, laser emission (stimulated emission) also experiences these same frequency changes. The parameters on which the variation of the emission frequency depends are a function of the degree of confinement of the dye incorporated in the dendrimer and the polarity of the solvent used. Both factors can be modified at will and in this way, a single macromolecular structure [dye-dendrimer] can be used to cover a wider range of laser emission frequencies. On the other hand, the possibility of modifying the polarity of the solvent in continuous mode, by means of mixtures, allows the construction of high precision laser frequency modulation devices. Results similar to those described above, even with much more pronounced effects, have been obtained with other dyes such as Congo Red or Rhodamina B.
Claims
1. Una estructura macromolecular de naturaleza dendrímera que comprende un dendrímero y, al menos, un colorante encapsulado en el interior de dicho dendrímero.1. A macromolecular structure of a dendrimer nature comprising a dendrimer and at least one encapsulated dye inside said dendrimer.
2. Estructura macromolecular según la reivindicación 1, en la que dicho dendrímero es un dendrímero de polialquilamina.2. Macromolecular structure according to claim 1, wherein said dendrimer is a polyalkylamine dendrimer.
3. Estructura macromolecular según la reivindicación 2, en la que dicho dendrímero es un dendrímero de polipropilenimina.3. Macromolecular structure according to claim 2, wherein said dendrimer is a polypropyleneimine dendrimer.
4. Estructura macromolecular según la reivindicación 1, en la que dicho dendrímero se selecciona entre un dendrímero de cuarta generación y un dendrímero de quinta generación.4. Macromolecular structure according to claim 1, wherein said dendrimer is selected from a fourth generation dendrimer and a fifth generation dendrimer.
5. Estructura macromolecular según la reivindicación 1, en la que dicho dendrímero comprende grupos terminales con capacidad para cerrar la estructura y evitar que el colorante encapsulado salga al exterior del dendrímero.5. Macromolecular structure according to claim 1, wherein said dendrimer comprises end groups capable of closing the structure and preventing the encapsulated dye from leaving the dendrimer outside.
6. Estructura macromolecular según la reivindicación 5, en la que dichos grupos terminales se seleccionan entre restos de aminoácidos, restos de derivados de aminoácidos, y restos de compuestos voluminosos con grupos funcionales capaces de reaccionar con grupos amina.6. Macromolecular structure according to claim 5, wherein said terminal groups are selected from amino acid residues, amino acid derivative residues, and bulky compound residues with functional groups capable of reacting with amine groups.
7. Estructura macromolecular según la reivindicación 1, en la que dicho colorante es un colorante del tipo utilizado en los láseres de colorante.7. Macromolecular structure according to claim 1, wherein said dye is a dye of the type used in dye lasers.
8. Estructura macromolecular según la reivindicación 1, en la que dicho dendrímero comprende un colorante. 8. Macromolecular structure according to claim 1, wherein said dendrimer comprises a dye.
9. Estructura macromolecular según la reivindicación 1, en la que dicho dendrímero comprende una mezcla de dos, tres o más colorantes.9. Macromolecular structure according to claim 1, wherein said dendrimer comprises a mixture of two, three or more dyes.
10. Estructura macromolecular según la reivindicación 1, en la que dicho colorante se selecciona entre Rosa de Bengala, Rojo Congo, Rhodamina B y sus mezclas.10. Macromolecular structure according to claim 1, wherein said dye is selected from Bengal Rose, Congo Red, Rhodamine B and mixtures thereof.
11. Estructura macromolecular según la reivindicación 1, en la que la relación molar dendrímero/colorante está comprendida entre 2 y 6.11. Macromolecular structure according to claim 1, wherein the dendrimer / dye molar ratio is between 2 and 6.
12. Una composición que comprende una estructura macromolecular de naturaleza dendrímera que comprende un dendrímero y un colorante encapsulado en el interior de dicho dendrímero según cualquiera de las reivindicaciones 1 a 11, y un disolvente.12. A composition comprising a macromolecular structure of a dendrimer nature comprising a dendrimer and a dye encapsulated within said dendrimer according to any one of claims 1 to 11, and a solvent.
13. Una composición según la reivindicación 12, en el que dicho disolvente se selecciona entre un disolvente polar, un disolvente apolar y sus mezclas.13. A composition according to claim 12, wherein said solvent is selected from a polar solvent, an apolar solvent and mixtures thereof.
14. Composición según la reivindicación 13, en el que dicho disolvente se selecciona entre agua, pentano, benceno, diclorometano, metanol, etanol y sus mezclas.14. Composition according to claim 13, wherein said solvent is selected from water, pentane, benzene, dichloromethane, methanol, ethanol and mixtures thereof.
15. Un procedimiento para modular la frecuencia de emisión de un colorante empleado en un láser de colorante, que comprende el empleo de una composición según cualquiera de las reivindicaciones 12 a 14. 15. A method for modulating the emission frequency of a dye used in a dye laser, comprising the use of a composition according to any of claims 12 to 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200202779A ES2208125B1 (en) | 2002-11-25 | 2002-11-25 | MACROMOLECULAR STRUCTURE OF DENDRIMERA NATURE THAT INCLUDES AN ENCAPSULATED COLOR AND APPLICATIONS. |
ESP200202779 | 2002-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004048445A1 true WO2004048445A1 (en) | 2004-06-10 |
Family
ID=32338309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2003/000593 WO2004048445A1 (en) | 2002-11-25 | 2003-11-25 | Dendrimer-type macromolecular structure comprising an encapsulated dye and applications |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2208125B1 (en) |
WO (1) | WO2004048445A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006060781A1 (en) * | 2006-09-29 | 2008-04-10 | Osram Opto Semiconductors Gmbh | Organic lighting device for use as e.g. optical indicator, emergency lighting, has organic layer stack formed within active region of substrate between first and second electrodes, and provided with organic layer for irradiating light |
US8328375B2 (en) | 2006-09-29 | 2012-12-11 | Osram Opto Semiconductors Gmbh | Organic lighting device and lighting equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999021935A1 (en) * | 1997-10-23 | 1999-05-06 | Isis Innovation Limited | Light-emitting dendrimers and devices |
-
2002
- 2002-11-25 ES ES200202779A patent/ES2208125B1/en not_active Expired - Fee Related
-
2003
- 2003-11-25 WO PCT/ES2003/000593 patent/WO2004048445A1/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999021935A1 (en) * | 1997-10-23 | 1999-05-06 | Isis Innovation Limited | Light-emitting dendrimers and devices |
Non-Patent Citations (4)
Title |
---|
BALZANI V. ET AL.: "Fluorescent quests hosted in fluorescent dendrimers", TETRAHEDRON, vol. 58, January 2002 (2002-01-01), pages 629 - 637, XP004332684, DOI: doi:10.1016/S0040-4020(01)01094-8 * |
OTOMO A. ET AL.: "Remarkable optical properties of dendrimers for laser applications", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 4461, 2001, pages 180 - 187, XP002390981, DOI: doi:10.1117/12.449831 * |
OTOMO A. ET AL.: "Stimulated emission in dendrimer doped polymer waveguides", THIN SOLID FILMS, vol. 393, August 2001 (2001-08-01), pages 278 - 283, XP004296467, DOI: doi:10.1016/S0040-6090(01)01087-2 * |
YOKO YAMA S. ET AL.: "Spatial photon confinement and super-radiation from dye cored dendrimer", THIN SOLID FILMS, vol. 393, August 2001 (2001-08-01), pages 124 - 128, XP004296443, DOI: doi:10.1016/S0040-6090(01)01117-8 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006060781A1 (en) * | 2006-09-29 | 2008-04-10 | Osram Opto Semiconductors Gmbh | Organic lighting device for use as e.g. optical indicator, emergency lighting, has organic layer stack formed within active region of substrate between first and second electrodes, and provided with organic layer for irradiating light |
US8328375B2 (en) | 2006-09-29 | 2012-12-11 | Osram Opto Semiconductors Gmbh | Organic lighting device and lighting equipment |
US8946986B2 (en) | 2006-09-29 | 2015-02-03 | Osram Opto Semiconductors Gmbh | Organic lighting device and lighting equipment |
US9312308B2 (en) | 2006-09-29 | 2016-04-12 | Osram Oled Gmbh | Organic lighting device and lighting equipment |
US9829192B2 (en) | 2006-09-29 | 2017-11-28 | Osram Oled Gmbh | Organic lighting device and lighting equipment |
US10267507B2 (en) | 2006-09-29 | 2019-04-23 | Osram Oled Gmbh | Organic lighting device and lighting equipment |
Also Published As
Publication number | Publication date |
---|---|
ES2208125B1 (en) | 2005-05-01 |
ES2208125A1 (en) | 2004-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Phosphorescence resonance energy transfer from purely organic supramolecular assembly | |
Liu et al. | Triarylboron‐doped acenethiophenes as organic sonosensitizers for highly efficient sonodynamic therapy with low phototoxicity | |
Li et al. | Rotaxane-branched dendrimers with enhanced photosensitization | |
Qin et al. | BODIPY-based macrocycles | |
Guo et al. | Unique double intramolecular and intermolecular exciton coupling in ethene‐bridged aza‐BODIPY dimers for high‐efficiency near‐infrared photothermal conversion and therapy | |
Babu et al. | Functional π-gelators and their applications | |
Gao et al. | Visible‐light‐switchable azobenzenes: Molecular design, supramolecular systems, and applications | |
US4916711A (en) | Lasing compositions and methods for using the same | |
Wu et al. | Light-harvesting fullerene dyads as organic triplet photosensitizers for triplet–triplet annihilation upconversions | |
Wu et al. | Modulating the optical properties and functions of organic molecules through polymerization | |
US5189029A (en) | Indacene compounds and methods for using the same | |
Bhajantri et al. | Studies on fluorescent PVA+ PVP+ MPDMAPP composite films | |
Liao et al. | The key role of molecular packing in luminescence property: from adjacent molecules to molecular aggregates | |
Vestberg et al. | Porphyrin-cored 2, 2-bis (methylol) propionic acid dendrimers | |
Gao et al. | Far‐red/near‐infrared emissive (1, 3‐dimethyl) barbituric acid‐based AIEgens for high‐contrast detection of metastatic Tumors in the lung | |
Cong et al. | Photonic metal‐organic frameworks | |
Zhang et al. | Self-assembly regulated singlet oxygen generation of heavy-atom-free organic chromophores | |
Xu et al. | Synthesis, characterization, two-photon absorption, and optical limiting properties of triphenylamine-based dendrimers | |
Qin et al. | Modular construction of AIE-active supramolecular cages with tunable fluorescence for NIR-II blood vessel imaging | |
ES2208125B1 (en) | MACROMOLECULAR STRUCTURE OF DENDRIMERA NATURE THAT INCLUDES AN ENCAPSULATED COLOR AND APPLICATIONS. | |
Khang et al. | Dual and sequential locked/unlocked photochromic effects on FRET controlled singlet oxygen processes by contracted/extended forms of diarylethene‐based [1] rotaxane nanoparticles | |
Moorefield et al. | Dendrimer chemistry: supramolecular perspectives and applications | |
Sengupta et al. | A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence | |
Li et al. | Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy | |
Wu et al. | Recent advances in pure-organic host–guest room-temperature phosphorescence systems toward bioimaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |