JP4428772B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP4428772B2
JP4428772B2 JP27484899A JP27484899A JP4428772B2 JP 4428772 B2 JP4428772 B2 JP 4428772B2 JP 27484899 A JP27484899 A JP 27484899A JP 27484899 A JP27484899 A JP 27484899A JP 4428772 B2 JP4428772 B2 JP 4428772B2
Authority
JP
Japan
Prior art keywords
group
organic
oled
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27484899A
Other languages
Japanese (ja)
Other versions
JP2001093670A (en
Inventor
則子 植田
康 大久保
弘志 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP27484899A priority Critical patent/JP4428772B2/en
Publication of JP2001093670A publication Critical patent/JP2001093670A/en
Application granted granted Critical
Publication of JP4428772B2 publication Critical patent/JP4428772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス(以下有機ELとも略記する)素子に関し、更に詳しくは、発光輝度に優れた有機EL素子材料および有機EL素子に関する。
【0002】
【従来の技術】
従来、無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが該発光素子を駆動させるためには交流の高電圧が必要である。最近開発された、有機エレクトロルミネッセンス素子は、蛍光性有機化合物を含む薄膜を、陰極と陽極で挟んだ構成を有し、前記薄膜に電子及び正孔を注入して再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の低電圧で発光が可能であり、自己発光型であるために視野角依存性に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0003】
これまで、様々な有機EL素子が報告されている。たとえば、Appl.Phys.Lett.,Vol.51、913頁あるいは特開昭59−194393号に記載の正孔注入層と有機発光体層とを組み合わせたもの、特開昭63−295695号に記載の正孔注入層と電子注入輸送層とを組み合わせたもの、Jpn.Journal of Applied Phisycs,vol.127,No.2第269〜271頁に記載の正孔移動層と発光層と電子移動層とを組み合わせたものがそれぞれ開示されている。しかしながら、より高輝度な素子が求められており、エネルギー変換効率、発光量子効率の更なる向上が期待されている。
【0004】
また、発光寿命が短い問題点が指摘されている。こうした経時での輝度劣化の要因は完全には解明されていないが発光中のエレクトロルミネッセンス素子は自ら発する光、及びその時に発生する熱などによって薄膜を構成する有機化合物自体の分解、薄膜中での有機化合物の結晶化等、有機EL素子材料である有機化合物に由来する要因も指摘されている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、高輝度に発光する有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス素子を提供することにある。
【0006】
【課題を解決するための手段】
本発明の上記目的は、下記構成により達成された。
【0007】
(1) 2つの電極間に挟持された有機物層を有する有機エレクトロルミネッセンス素子において、該有機物層の少なくとも1層に、分子内に少なくとも1つの芳香族基で置換されたホウ素原子と少なくとも1つの芳香族基で置換された窒素原子とを併せ持つ化合物である下記一般式(VIII)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化c】

Figure 0004428772
〔式中、Ar 及びAr は各々独立に置換又は無置換のアリール基を表し、Ar 及びAr は直接又は置換基を介して互いに結合してAr 及びAr と結合したホウ素原子と共に縮合環を形成していてもよい。Q は置換又は無置換のフェニレン基、ビフェニレン基、下記一般式(VI)または下記一般式(VII)で表される基を表し、n1は1を表す。〕
【化d】
Figure 0004428772
〔式中、n3は1または2、n4は1乃至3の整数を表す。〕
【0023】
以下に、本発明の一般式(VIII)で表される化合物について説明する。前記一般式(VIII)において、Ar 及びAr は各々独立に置換基を有していてもよいアリール基であり、フェニル、ナフチル、アントリル、アズリル、アセナフテニル、フルオレニル、フェナントリル、インデニル、ピレニル、ビフェニル、ピリジル、ピリミジル、フラニル、ピロニル、イミダゾリル、ピラゾリル、1,2,4−トリアゾリル、1,2,3−トリアゾリル、オキサゾリル、チアゾリル、イソオキサゾリル、イソチアゾリル、フラジル、チオフェニル、キノリル、ベンゾフラニル、ベンゾチオフェニル、インドリル、カルバゾリル、ベンゾオキサゾリル、キノキサリル、ベンゾイミダゾリル、ピラゾリル、ジベンゾフラニル、ジベンゾチオフェニル等を示し、これらのアリール基は更にハロゲン原子、水酸基、シアノ基、ニトロ基、アルキル基、アリール基、アルコキシ基、アミノ基等で置換されていてもよい。Ar 及びAr は直接又は置換基を介して互いに結合してAr 及びAr と結合したホウ素原子と共に縮合環を形成していてもよい。Q は置換又は無置換のフェニレン基、ビフェニレン基、前記一般式(VI)または一般式(VII)で表される基を表し、n1は1を表す。前記一般式(VI)、一般式(VII)中、n3は1または2、n4は1乃至3の整数を表す。
【0024】
また、ArとArの置換基は各々互いに結合してそれらと結合したホウ素原子との間で縮合環を形成していてもよく、具体的には下記のような構造をとっていてもよい。
【化e】
Figure 0004428772
【0028】
、フェニレン基、ビフェニレン基、一般式(VI)または一般式(VII)
【0029】
【化13】
Figure 0004428772
【0030】
式中、n3は1または2、n4は1乃至3の整数を表す。
【0031】
で表される基等を示すが、これらの基はさらに置換基を有していてもよく、置換基としては、アルキル基(例えばメチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基等)、シクロアルキル基(例えばシクロペンチル基、シクロヘキシル基等)、アラルキル基(例えばベンジル基、2−フェネチル基等)、前記Ar 1 〜Ar 2 と同義のアリール基(例えばフェニル基、ナフチル基、p−トリル基、p−クロロフェニル基等)、アルコキシ基(例えばメトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基等)、アリールオキシ基(例えばフェノキシ基等)等が挙げられる。これらの基はさらに置換されていてもよく、前記置換基としては、ハロゲン原子、水素原子、トリフルオロメチル基、シアノ基、ニトロ基、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、ジアルキルアミノ基、ジベンジルアミノ基、ジアリールアミノ基等が挙げられる。
【0032】
以下に、本発明における一般式(VIII)で表される化合物および参考となる化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0033】
【化14】
Figure 0004428772
【0034】
【化15】
Figure 0004428772
【0035】
【化16】
Figure 0004428772
【0036】
【化17】
Figure 0004428772
【0037】
【化18】
Figure 0004428772
【0038】
【化19】
Figure 0004428772
【0039】
【化20】
Figure 0004428772
【0040】
【化21】
Figure 0004428772
【0041】
【化22】
Figure 0004428772
【0042】
【化23】
Figure 0004428772
【0043】
【化24】
Figure 0004428772
【0044】
【化25】
Figure 0004428772
【0045】
【化26】
Figure 0004428772
【0046】
【化27】
Figure 0004428772
【0047】
【化28】
Figure 0004428772
【0048】
【化29】
Figure 0004428772
【0049】
【化30】
Figure 0004428772
【0050】
【化31】
Figure 0004428772
【0053】
以下に例示化合物の合成例を示す。
【0054】
化合物I−1の合成
【0055】
【化34】
Figure 0004428772
【0056】
塩化メチレン120mlにトリフェニルアミン8.84gを加え、室温で臭素6.33gを滴下し、1時間撹拌した。反応溶液を濃縮後、カラムクロマトグラフィーで精製することで、モノブロモ体を7.36g得た。これを窒素雰囲気下テトラヒドロフラン10mlに溶かし、−78℃に冷却下、n−ブチルリチウムの1.6Mヘキサン溶液(15.6ml)を加え、30分間撹拌した。ここにフルオロ−ビス−(2,4,6−トリメチル−フェニル)−ボラン6.70gを加え、室温にして1時間撹拌した。反応溶液をエーテルで抽出し、カラムクロマトグラフィーで精製することで、目的物を4.70g得た。NMRおよびマススペクトルにより、目的化合物I−1であることを確認した。
【0057】
化合物I−26の合成
【0058】
【化35】
Figure 0004428772
【0059】
化合物I−26は文献Doty,J.C.et al.;J.Organomet.Chem.,38,1972;229−236;に記載の方法で合成した。
【0060】
本発明において有機EL素子は、基本的には一対の電極の間に発光層を挾持し、必要に応じ正孔注入層や電子注入層を介在させた構造を有する。
【0061】
具体的には、
(i)陽極/発光層/陰極
(ii)陽極/正孔注入層/発光層/陰極
(iii)陽極/発光層/電子注入層/陰極
(iv)陽極/正孔注入層/発光層/電子注入層/陰極
などの構造がある。
【0062】
上記発光層は(1)電界印加時に、陽極又は正孔注入層により正孔を注入することができ、かつ陰極又は電子注入層より電子を注入することができる注入機能、(2)注入した電荷(電子と正孔)を電界の力で移動させる輸送機能、(3)電子と正孔の再結合の場を発光層内部に提供し、これを発光につなげる発光機能などを有している。ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送機能に大小があってもよいが、少なくとも、どちらか一方の電荷を移動させる機能を有するものが好ましい。この発光層に用いられる発光材料の種類については特に制限はなく、従来有機EL素子における発光材料として公知のものを用いることができる。このような発光材料は主に有機化合物であり、所望の色調により、例えば、Macromol.Symp.125巻17頁から26頁に記載の化合物が挙げられる。
【0063】
上記材料を用いて発光層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜化することにより形成することができるが、特に分子堆積膜であることが好ましい。ここで、分子堆積膜とは、該化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜はLB法により形成された薄膜(分子累積膜)と凝集構造、高次構造の相違や、それに起因する機能的な相違により区別することができる。
【0064】
また、この発光層は、特開昭57−51781号公報に記載されているように、樹脂などの結着材と共に上記発光材料を溶剤に溶かして溶液としたのち、これをスピンコート法などにより薄膜化して形成することができる。このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm〜5μmの範囲である。このEL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAuなどの金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnOなどの導電性透明材料が挙げられる。該陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。
【0065】
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性及び酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物などが好適である。該陰極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光効率が向上し好都合である。
【0066】
次に、必要に応じて設けられる正孔注入層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、そのうえ、発光層に陰極又は電子注入層より注入された電子は、発光層と正孔注入層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。この正孔注入層の材料(以下、正孔注入材料という)については、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。
【0067】
上記正孔注入材料は、正孔の注入、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。この正孔注入材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。正孔注入材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
【0068】
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。
【0069】
また、p型−Si、p型−SiCなどの無機化合物も正孔注入材料として使用することができる。この正孔注入層は、上記正孔注入材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔注入層の膜厚については特に制限はないが、通常は5nm〜5μm程度である。この正孔注入層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。さらに、必要に応じて用いられる電子注入層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
【0070】
この電子注入層に用いられる材料(以下、電子注入材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。また、特開昭59−194393号公報に記載されている一連の電子伝達性化合物は、該公報では発光層を形成する材料として開示されているが、本発明者らが検討の結果、電子注入材料として用いうることが分かった。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子注入材料として用いることができる。
【0071】
また、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子注入材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子注入材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子注入材料として用いることができるし、正孔注入層と同様に、n型−Si、n型−SiCなどの無機半導体も電子注入材料として用いることができる。
【0072】
この電子注入層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。電子注入層としての膜厚は、特に制限はないが、通常は5nm〜5μmの範囲で選ばれる。この電子注入層は、これらの電子注入材料一種又は二種以上からなる一層構造であってもよいし、あるいは、同一組成又は異種組成の複数層からなる積層構造であってもよい。次に、該有機EL素子を作製する好適な例を説明する。例として、前記の陽極/正孔注入層/発光層/電子注入層/陰極からなるEL素子の作製法について説明すると、まず適当な基板上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、発光層、電子注入層の材料からなる薄膜を形成させる。
【0073】
本発明の一般式(I)で表される化合物のアニオンと金属カチオンの塩は、正孔注入層、正孔輸送層、発光層、電子注入層、電子輸送層のいずれの層に含まれてもよく、単独あるいは他の化合物と層を形成することが出来る。
【0074】
この薄膜化の方法としては、前記の如くスピンコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、かつピンホールが生成しにくいなどの点から、真空蒸着法が好ましい。この薄膜化に、この蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類、分子堆積膜の目的とする結晶構造、会合構造などにより異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-3Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選ぶことが望ましい。
【0075】
これらの層の形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリングなどの方法により形成させ、陰極を設けることにより、所望のEL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、作製順序を逆にして、陰極、電子注入層、発光層、正孔注入層、陽極の順に作製することも可能である。このようにして得られたEL素子に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧5〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
【0076】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0077】
実施例1
比較用有機EL素子(OLED−01)の作製
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)[1,1′−ビフェニル]−4,4′−ジアミン(TPD)200mgを入れ、別のモリブデン製抵抗加熱ボートに4,4′−ビス(2,2′−ジフェニルビニル)ビフェニル(DPVBi)200mgを入れ、さらに別のモリブデン製抵抗加熱ボートにOXD−7を200mg入れ、真空蒸着装置に取付けた。次いで、真空槽を4×10-4Paまで減圧した後、TPDの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで透明支持基板に蒸着し、膜厚60nmの正孔注入層を設けた。さらに、DPVBiの入った前記加熱ボートを通電して220℃まで加熱し、蒸着速度0.1〜0.3nm/secで前記正孔注入層上に蒸着して膜厚40nmの発光層を設けた。さらに、OXD−7の入った前記加熱ボートを通電して250℃まで加熱し、蒸着速度0.1nm/secで前記発光層の上に蒸着して膜厚20nmの電子注入層を設けた。なお、蒸着時の基板温度は室温であった。次に、真空槽をあけ、電子注入層の上にステンレス鋼製の長方形穴あきマスクを設置し、一方、モリブデン製抵抗加熱ボートにマグネシウム3gを入れ、タングステン製の蒸着用バスケットに銀を0.5g入れ、再び真空槽を2×10-4Paまで減圧した後、マグネシウム入りのボートに通電して蒸着速度1.5〜2.0nm/secでマグネシウムを蒸着し、この際、同時に銀のバスケットを加熱し、蒸着速度0.1nm/secで銀を蒸着し、前記マグネシウムと銀との混合物からなる対向電極とすることにより、比較用有機EL素子(OLED−01)を作製した。
【0078】
この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、青色の発光を得た。
【0079】
【化36】
Figure 0004428772
【0080】
実施例2
比較の有機EL素子(OLED−02〜OLED−03)と、本発明の有機EL素子(OLED−05、OLED−09及び参考となる有機EL素子(OLED−04、OLED−6〜OLED−08、OLED−10、OLED−11)の作製(電子輸送材料としての評価)
実施例1で作製した有機EL素子(OLED−01)の第1層の電子輸送材料であるOXD−7のみを表1に示す化合物に替えた有機EL素子(OLED−02〜OLED−11)を作製した。
【0081】
これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料OLED−02の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料OLED−02の輝度が半減する時間を100とした相対値で表した。OLED−01も含め、結果を表1に示す。
【0082】
【表1】
Figure 0004428772
【0083】
【化37】
Figure 0004428772
【0084】
表1から明らかなように、本発明の有機EL素子の電子輸送材料として使用した試料(OLED−05、OLED−09)は、従来の電子輸送材料を用いて作製した試料(OLED−01〜OLED−03)に比べて何れも発光輝度の向上が認められた。また素子の発光寿命も非常に大きく改善された。
【0085】
実施例3
比較の有機EL素子(OLED−20〜OLED−23)と、本発明の有機EL素子(OLED−26、OLED−27、OLED−3および参考となる有機EL素子(OLED−24、OLED−25、OLED−28、OLED−29、OLED−31、OLED−32)の作製(正孔輸送材料としての評価)
実施例1で作製した有機EL素子(OLED−01)の第2層(発光層)を取り除き、第1層(正孔輸送層)と第3層(電子輸送層兼発光層)の2層構成とし、有機EL素子(OLED−01)の第1層の正孔輸送材料を表2に示す化合物に替え、第3層の電子輸送材料であるOXD−7をトリス(8−ヒドロキシキノリナート)アルミニウム(Alq3)にかえた有機EL素子(OLED−20〜OLED−32)を作製した。
【0086】
これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料OLED−21の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料OLED−21の輝度が半減する時間を100とした相対値で表した。結果を表2に示す。
【0087】
【表2】
Figure 0004428772
【0088】
【化38】
Figure 0004428772
【0089】
表2から明らかなように、本発明の化合物を有機EL素子の正孔輸送材料として使用した試料(OLED−26、OLED−27、OLED−3)は何れも発光輝度が高くまた素子の発光寿命も長いことがわかる。
【0090】
実施例4
単層構成での評価
本発明の化合物(I−7、II−7)のみをITO上にスピンコートした後に陰極を蒸着した有機単層構成の試料でも、10〜18Vの電圧で青から緑に発光することがわかった。
【0091】
【発明の効果】
本発明により、高輝度に発光する有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス素子を提供することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electroluminescence element material and an organic electroluminescence (hereinafter also abbreviated as organic EL) element, and more particularly to an organic EL element material and an organic EL element that are excellent in light emission luminance.
[0002]
[Prior art]
Conventionally, inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements. A recently developed organic electroluminescence device has a structure in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode, and excitons (by injecting electrons and holes into the thin film for recombination) Is an element that emits light by utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a low voltage of several to several tens of volts. Since it is a light-emitting type, it has a wide viewing angle dependency, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
[0003]
Various organic EL elements have been reported so far. For example, Appl. Phys. Lett. , Vol. 51, 913 or a combination of a hole injection layer described in JP-A-59-194393 and an organic light-emitting layer, a hole injection layer described in JP-A-63-295695, an electron injection transport layer, , Jpn. Journal of Applied Physics, vol. 127, no. 2 A combination of the hole transfer layer, the light emitting layer, and the electron transfer layer described on pages 269 to 271 is disclosed. However, a device with higher luminance is demanded, and further improvement in energy conversion efficiency and light emission quantum efficiency is expected.
[0004]
In addition, a problem with a short emission lifetime has been pointed out. The cause of this deterioration in luminance over time has not been fully elucidated, but the electroluminescent device that emits light decomposes the organic compound itself that constitutes the thin film by the light emitted by itself and the heat generated at that time. Factors derived from organic compounds, which are organic EL element materials, such as crystallization of organic compounds, have also been pointed out.
[0005]
[Problems to be solved by the invention]
The objective of this invention is providing the organic electroluminescent element material and organic electroluminescent element which light-emit with high brightness | luminance.
[0006]
[Means for Solving the Problems]
The above object of the present invention has been achieved by the following constitution.
[0007]
(1) In an organic electroluminescence device having an organic layer sandwiched between two electrodes, at least one layer of the organic layer has a boron atom substituted with at least one aromatic group in the molecule and at least one aromatic A compound having both a nitrogen atom substituted with a group and the following general formula (VIII)ThingsContainRukoAn organic electroluminescence device characterized by the above.
[Chemical formula c]
Figure 0004428772
[Wherein Ar 1 And Ar 2 Each independently represents a substituted or unsubstituted aryl group, Ar 1 And Ar 2 Are bonded to each other directly or through a substituent, and Ar 1 And Ar 2 A condensed ring may be formed together with a boron atom bonded to. Q 1 Represents a substituted or unsubstituted phenylene group, a biphenylene group, a group represented by the following general formula (VI) or the following general formula (VII), and n1 represents 1. ]
[Chemical formula d]
Figure 0004428772
[Wherein n3 represents 1 or 2, and n4 represents an integer of 1 to 3. ]
[0023]
  The general formula (VIII) Will be described. General formula (VIII) Ar1 as well asAr 2 Each may independently have a substituent.ArylAnd phenyl, naphthyl, anthryl, azulyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, pyrenyl, biphenyl, pyridyl, pyrimidyl, furanyl, pyronyl, imidazolyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3- Indicates triazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazyl, thiophenyl, quinolyl, benzofuranyl, benzothiophenyl, indolyl, carbazolyl, benzoxazolyl, quinoxalyl, benzoimidazolyl, pyrazolyl, dibenzofuranyl, dibenzothiophenyl, etc. The aryl group may be further substituted with a halogen atom, a hydroxyl group, a cyano group, a nitro group, an alkyl group, an aryl group, an alkoxy group, an amino group, or the like.Ar 1 And Ar 2 Are bonded to each other directly or through a substituent, and Ar 1 And Ar 2 A condensed ring may be formed together with a boron atom bonded to. Q 1 Represents a substituted or unsubstituted phenylene group, a biphenylene group, a group represented by the general formula (VI) or the general formula (VII), and n1 represents 1. In the general formulas (VI) and (VII), n3 represents 1 or 2, and n4 represents an integer of 1 to 3.
[0024]
  Ar1And Ar2Each of these substituents may be bonded to each other to form a condensed ring with the bonded boron atom, specifically,belowYou may take such a structure.
[Chemical e]
Figure 0004428772
[0028]
  Q 1 Is, Phenylene group, biphenylene group, general formula (VI) or general formula (VII)
[0029]
Embedded image
Figure 0004428772
[0030]
In the formula, n3 represents 1 or 2, and n4 represents an integer of 1 to 3.
[0031]
These groups may have a substituent, and as a substituent,An alkyl group (for example, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), aralkyl group (for example, Benzyl group, 2-phenethyl group, etc.), Ar 1 ~ Ar 2 An aryl group (for example, phenyl group, naphthyl group, p-tolyl group, p-chlorophenyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group, n-butoxy group, etc.), aryloxy group ( For example, phenoxy group and the like. These groups may be further substituted. Examples of the substituent include a halogen atom, a hydrogen atom, a trifluoromethyl group, a cyano group, a nitro group, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, and an alkylthio group. , Dialkylamino group, dibenzylamino group, diarylamino group, etc.Is mentioned.
[0032]
  The general formula (VIIICompound represented byAnd reference compoundsAlthough the specific example is shown, this invention is not limited to these.
[0033]
Embedded image
Figure 0004428772
[0034]
Embedded image
Figure 0004428772
[0035]
Embedded image
Figure 0004428772
[0036]
Embedded image
Figure 0004428772
[0037]
Embedded image
Figure 0004428772
[0038]
Embedded image
Figure 0004428772
[0039]
Embedded image
Figure 0004428772
[0040]
Embedded image
Figure 0004428772
[0041]
Embedded image
Figure 0004428772
[0042]
Embedded image
Figure 0004428772
[0043]
Embedded image
Figure 0004428772
[0044]
Embedded image
Figure 0004428772
[0045]
Embedded image
Figure 0004428772
[0046]
Embedded image
Figure 0004428772
[0047]
Embedded image
Figure 0004428772
[0048]
Embedded image
Figure 0004428772
[0049]
Embedded image
Figure 0004428772
[0050]
Embedded image
Figure 0004428772
[0053]
Synthesis examples of exemplary compounds are shown below.
[0054]
Synthesis of Compound I-1
[0055]
Embedded image
Figure 0004428772
[0056]
To 120 ml of methylene chloride, 8.84 g of triphenylamine was added, and 6.33 g of bromine was added dropwise at room temperature, followed by stirring for 1 hour. The reaction solution was concentrated and purified by column chromatography to obtain 7.36 g of a monobromo compound. This was dissolved in 10 ml of tetrahydrofuran under a nitrogen atmosphere, and 1.6 M hexane solution (15.6 ml) of n-butyllithium was added while cooling to −78 ° C., followed by stirring for 30 minutes. To this was added 6.70 g of fluoro-bis- (2,4,6-trimethyl-phenyl) -borane, and the mixture was stirred at room temperature for 1 hour. The reaction solution was extracted with ether and purified by column chromatography to obtain 4.70 g of the desired product. By NMR and mass spectrum, it was confirmed to be the target compound I-1.
[0057]
Synthesis of Compound I-26
[0058]
Embedded image
Figure 0004428772
[0059]
Compound I-26 is described in the literature Doty, J. et al. C. et al. J .; Organomet. Chem. , 38, 1972; 229-236;
[0060]
In the present invention, the organic EL element basically has a structure in which a light emitting layer is held between a pair of electrodes, and a hole injection layer or an electron injection layer is interposed as required.
[0061]
In particular,
(I) Anode / light emitting layer / cathode
(Ii) Anode / hole injection layer / light emitting layer / cathode
(Iii) Anode / light emitting layer / electron injection layer / cathode
(Iv) Anode / hole injection layer / light emitting layer / electron injection layer / cathode
There is a structure such as.
[0062]
The light emitting layer has (1) an injection function capable of injecting holes from an anode or a hole injection layer when an electric field is applied, and (2) injected charge. It has a transport function that moves (electrons and holes) by the force of an electric field, and (3) a light-emitting function that provides a field for recombination of electrons and holes inside the light-emitting layer and connects it to light emission. However, there may be a difference in the ease of hole injection and electron injection, and the transport function represented by the mobility of holes and electrons may be large or small. Those having a function of moving one of the charges are preferable. There is no restriction | limiting in particular about the kind of luminescent material used for this light emitting layer, A well-known thing can be used as a luminescent material in a conventional organic EL element. Such a light-emitting material is mainly an organic compound, and may have a desired color tone, for example, Macromol. Symp. 125, pages 17 to 26, and the like.
[0063]
As a method for forming a light emitting layer using the above-mentioned material, it can be formed by thinning by a known method such as vapor deposition, spin coating, casting, LB, etc. Preferably there is. Here, the molecular deposited film is a thin film formed by deposition from the vapor phase state of the compound or a film formed by solidification from the molten state or liquid phase state of the compound. Usually, this molecular deposited film can be distinguished from a thin film (molecular accumulated film) formed by the LB method, a difference in aggregation structure and higher order structure, and a functional difference resulting therefrom.
[0064]
Further, as described in JP-A-57-51781, this light emitting layer is prepared by dissolving the above light emitting material in a solvent together with a binder such as a resin, and then using a spin coating method or the like. It can be formed as a thin film. There is no restriction | limiting in particular about the film thickness of the light emitting layer formed in this way, Although it can select suitably according to a condition, Usually, it is the range of 5 nm-5 micrometers. As an anode in this EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, CuI, indium tin oxide (ITO), SnO.2And conductive transparent materials such as ZnO. The anode may be formed by forming a thin film by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or (100 μm) when pattern accuracy is not so required. As described above, a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. When light emission is extracted from the anode, the transmittance is desirably greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
[0065]
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al2OThree) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injecting and oxidation, for example, a magnesium / silver mixture, magnesium / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al2OThree) Mixtures, lithium / aluminum mixtures and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 1 μm, preferably 50 to 200 nm. In order to transmit light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission efficiency is improved, which is convenient.
[0066]
Next, the hole injection layer provided as necessary has a function of transmitting holes injected from the anode to the light emitting layer, and the hole injection layer is interposed between the anode and the light emitting layer. In addition, many holes are injected into the light emitting layer at a lower electric field, and moreover, electrons injected from the cathode or the electron injection layer into the light emitting layer are blocked by an electron barrier present at the interface between the light emitting layer and the hole injection layer. It becomes an element having excellent light emitting performance, such as accumulation at the interface in the light emitting layer and improvement in light emission efficiency. The material for the hole injection layer (hereinafter referred to as a hole injection material) is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally used as a charge injection / transport material for holes in optical transmission materials. Can be selected and used from the known ones used for the hole injection layer of EL devices.
[0067]
The hole injection material has either hole injection or electron barrier properties, and may be either organic or inorganic. Examples of the hole injection material include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives. Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. As the hole injecting material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
[0068]
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N ′. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; Bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p- Tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N′-diphenyl-N, N -Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadri N; N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenyl Amino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole and further described in US Pat. No. 5,061,569 Having two condensed aromatic rings in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8688 are linked in a starburst type ( MTDATA).
[0069]
In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material. The hole injection layer can be formed by thinning the hole injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of a positive hole injection layer, Usually, it is about 5 nm-5 micrometers. The hole injection layer may have a single layer structure composed of one or more of the above materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. Furthermore, the electron injecting layer used as necessary only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material selected from conventionally known compounds can be selected. Can be used.
[0070]
Examples of materials used in this electron injection layer (hereinafter referred to as electron injection materials) include heterocyclic tetracarboxylic anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, carbodiimide, Examples include fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives. In addition, a series of electron transfer compounds described in Japanese Patent Application Laid-Open No. 59-194393 is disclosed as a material for forming a light emitting layer in the publication. It was found that it can be used as a material. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron injection material.
[0071]
In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu Metal complexes replaced with Ca, Sn, Ga, or Pb can also be used as the electron injection material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron injection material. Further, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as the electron injecting material. Similarly to the hole injecting layer, inorganic semiconductors such as n-type-Si and n-type-SiC can be used as the electron injecting material. Can be used as
[0072]
This electron injection layer can be formed by forming the above compound by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The thickness of the electron injection layer is not particularly limited, but is usually selected in the range of 5 nm to 5 μm. The electron injection layer may have a single layer structure composed of one or two or more of these electron injection materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions. Next, a suitable example for producing the organic EL element will be described. As an example, a method for producing an EL device composed of the anode / hole injection layer / light emitting layer / electron injection layer / cathode will be described. First, a thin film made of a desired electrode material such as an anode material on an appropriate substrate. Is formed by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm, to produce an anode. Next, a thin film made of materials of a hole injection layer, a light emitting layer, and an electron injection layer which are element materials is formed thereon.
[0073]
The anion and metal cation salt of the compound represented by the general formula (I) of the present invention is contained in any of the hole injection layer, the hole transport layer, the light emitting layer, the electron injection layer, and the electron transport layer. It is also possible to form a layer alone or with other compounds.
[0074]
As the thinning method, there are a spin coating method, a casting method, a vapor deposition method and the like as described above, but a vacuum vapor deposition method is preferable because a homogeneous film can be easily obtained and pinholes are hardly generated. . When this vapor deposition method is employed for this thinning, the vapor deposition conditions vary depending on the type of compound used, the target crystal structure of the molecular deposition film, the association structure, etc., but generally the boat heating temperature is 50 to 450 ° C., Degree of vacuum 10-6-10-3It is desirable to select appropriately within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and film thickness of 5 nm to 5 μm.
[0075]
After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a cathode is provided. Thus, a desired EL element can be obtained. The organic EL device is preferably produced from the hole injection layer to the cathode consistently by a single vacuum, but the order of production is reversed, the cathode, the electron injection layer, the light emitting layer, and the hole injection. It is also possible to produce the layer and the anode in this order. When a DC voltage is applied to the EL element thus obtained, light emission can be observed by applying a voltage of about 5 to 40 V with the anode being + and the cathode being-. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
[0076]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this.
[0077]
Example 1
Preparation of organic EL element for comparison (OLED-01)
After patterning a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) having a 150 nm ITO film on glass as an anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol and dried nitrogen After drying with gas, UV ozone cleaning was performed for 5 minutes. This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while N, N'-diphenyl-N, N'-bis (3-methylphenyl) [1,1 200 mg of '-biphenyl] -4,4'-diamine (TPD), 200 mg of 4,4'-bis (2,2'-diphenylvinyl) biphenyl (DPVBi) in another molybdenum resistance heating boat, 200 mg of OXD-7 was put into another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus. The vacuum chamber is then 4 × 10-FourAfter depressurizing to Pa, energize the heating boat containing TPD, heat to 220 ° C., deposit on a transparent support substrate at a deposition rate of 0.1 to 0.3 nm / sec, and inject holes with a thickness of 60 nm. A layer was provided. Furthermore, the heating boat containing DPVBi was energized and heated to 220 ° C., and deposited on the hole injection layer at a deposition rate of 0.1 to 0.3 nm / sec to provide a light emitting layer having a thickness of 40 nm. . Further, the heating boat containing OXD-7 was energized and heated to 250 ° C., and deposited on the light emitting layer at a deposition rate of 0.1 nm / sec to provide an electron injection layer having a thickness of 20 nm. In addition, the substrate temperature at the time of vapor deposition was room temperature. Next, a vacuum chamber is opened, and a stainless steel rectangular perforated mask is placed on the electron injection layer. On the other hand, 3 g of magnesium is placed in a molybdenum resistance heating boat, and 0.02 of silver is placed in a tungsten vapor deposition basket. Put 5g and again vacuum tank 2 × 10-FourAfter depressurizing to Pa, power was applied to the magnesium-containing boat to deposit magnesium at a deposition rate of 1.5 to 2.0 nm / sec. At this time, the silver basket was heated at the same time, and the deposition rate was 0.1 nm / sec. The organic EL element for comparison (OLED-01) was produced by vapor-depositing silver to obtain a counter electrode made of a mixture of magnesium and silver.
[0078]
When a direct current of 10 volts was applied with the ITO electrode of this element as the anode and the counter electrode made of magnesium and silver as the cathode, blue light emission was obtained.
[0079]
Embedded image
Figure 0004428772
[0080]
Example 2
  Comparative organic EL elements (OLED-02 to OLED-03) and organic EL elements of the present invention (OLED-0)5,OLED-09)And reference organic EL elements (OLED-04, OLED-6 to OLED-08, OLED-10, OLED-11)(Evaluation as electron transport material)
  Organic EL elements (OLED-02 to OLED-11) in which only OXD-7, which is the electron transport material of the first layer of the organic EL element (OLED-01) prepared in Example 1, was replaced with the compounds shown in Table 1. Produced.
[0081]
These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the light emission luminance (cd / m at the start of lighting)2) And the time to reduce the luminance by half. The light emission luminance is expressed as a relative value when the light emission luminance of the sample OLED-02 is 100, and the time when the luminance is halved is expressed as a relative value when the time when the luminance of the sample OLED-02 is halved is 100. The results are shown in Table 1, including OLED-01.
[0082]
[Table 1]
Figure 0004428772
[0083]
Embedded image
Figure 0004428772
[0084]
  As apparent from Table 1, the sample (OLED-0) used as the electron transport material of the organic EL device of the present invention.5,OLED-09) Was found to have improved emission luminance as compared with samples (OLED-01 to OLED-03) prepared using conventional electron transport materials. In addition, the light emission life of the device was greatly improved.
[0085]
Example 3
  Comparative organic EL element (OLED-20 to OLED-23) and organic EL element of the present invention (OLED-2)6, OLED-27,OLED-30)And organic EL elements for reference (OLED-24, OLED-25, OLED-28, OLED-29, OLED-31, OLED-32)(Evaluation as a hole transport material)
  The second layer (light-emitting layer) of the organic EL device (OLED-01) produced in Example 1 was removed, and a two-layer configuration of a first layer (hole transport layer) and a third layer (electron transport layer / light-emitting layer) And the hole transport material of the first layer of the organic EL device (OLED-01) is changed to the compound shown in Table 2, and OXD-7 which is the electron transport material of the third layer is changed to tris (8-hydroxyquinolinate). Organic EL elements (OLED-20 to OLED-32) replaced with aluminum (Alq3) were produced.
[0086]
These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the light emission luminance (cd / m at the start of lighting)2) And the time to reduce the luminance by half. The light emission luminance is expressed as a relative value when the light emission luminance of the sample OLED-21 is 100, and the time when the luminance is halved is expressed as a relative value when the time when the luminance of the sample OLED-21 is halved is 100. The results are shown in Table 2.
[0087]
[Table 2]
Figure 0004428772
[0088]
Embedded image
Figure 0004428772
[0089]
  As is clear from Table 2, a sample (OLED-2) in which the compound of the present invention was used as a hole transport material for an organic EL device.6, OLED-27,OLED-30) Show that the emission luminance is high and the light emission lifetime of the element is long.
[0090]
Example 4
  Evaluation in a single layer configuration
  Compounds of the present invention (I-7, II-7)It was found that even a sample having an organic single layer structure in which only the cathode was deposited on ITO and then the cathode was deposited emitted light from blue to green at a voltage of 10 to 18V.
[0091]
【The invention's effect】
According to the present invention, an organic electroluminescence element material and an organic electroluminescence element that emit light with high luminance can be provided.

Claims (1)

2つの電極間に挟持された有機物層を有する有機エレクトロルミネッセンス素子において、該有機物層の少なくとも1層に、分子内に少なくとも1つの芳香族基で置換されたホウ素原子と少なくとも1つの芳香族基で置換された窒素原子とを併せ持つ化合物である下記一般式(VIII)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 0004428772
〔式中、Ar及びArは各々独立に置換又は無置換のアリール基を表し、Ar及びArは直接又は置換基を介して互いに結合してAr及びArと結合したホウ素原子と共に縮合環を形成していてもよい。Q は置換又は無置換のフェニレン基、ビフェニレン基、下記一般式(VI)または下記一般式(VII)で表される基を表し、n1は1を表す。〕
Figure 0004428772
〔式中、n3は1または2、n4は1乃至3の整数を表す。〕
In an organic electroluminescence device having an organic layer sandwiched between two electrodes, at least one layer of the organic layer includes a boron atom substituted with at least one aromatic group in the molecule and at least one aromatic group. the organic electroluminescent device characterized by containing a compound represented by the following general formula is a compound having both a substituted nitrogen atom (VIII).
Figure 0004428772
[In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, and Ar 1 and Ar 2 are bonded to each other directly or through a substituent and bonded to Ar 1 and Ar 2. And may form a condensed ring . Q 1 represents a substituted or unsubstituted phenylene group, a biphenylene group, a group represented by the following general formula (VI) or the following general formula (VII), and n1 represents 1 . ]
Figure 0004428772
[Wherein n3 represents 1 or 2, and n4 represents an integer of 1 to 3. ]
JP27484899A 1999-09-28 1999-09-28 Organic electroluminescence device Expired - Fee Related JP4428772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27484899A JP4428772B2 (en) 1999-09-28 1999-09-28 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27484899A JP4428772B2 (en) 1999-09-28 1999-09-28 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2001093670A JP2001093670A (en) 2001-04-06
JP4428772B2 true JP4428772B2 (en) 2010-03-10

Family

ID=17547432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27484899A Expired - Fee Related JP4428772B2 (en) 1999-09-28 1999-09-28 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4428772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502259B2 (en) 2019-03-05 2022-11-15 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11950492B2 (en) 2019-01-29 2024-04-02 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023204B2 (en) * 2001-05-02 2007-12-19 淳二 城戸 Organic electroluminescence device
JP4804661B2 (en) * 2001-07-11 2011-11-02 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP4300788B2 (en) * 2001-12-06 2009-07-22 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
US6835473B2 (en) * 2001-12-06 2004-12-28 Konica Corporation Organic electroluminescence element and display
JP3994799B2 (en) * 2002-06-11 2007-10-24 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP4265219B2 (en) * 2003-01-06 2009-05-20 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP4417638B2 (en) * 2003-02-26 2010-02-17 大日本印刷株式会社 Composition for organic electroluminescence device and organic electroluminescence device
WO2005062676A1 (en) * 2003-12-24 2005-07-07 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
JP2006151866A (en) * 2004-11-29 2006-06-15 Canon Inc Phenanthroline compound and light-emitting element
JP5040080B2 (en) * 2005-07-20 2012-10-03 Jnc株式会社 Organic electroluminescence device
JP2007070282A (en) * 2005-09-06 2007-03-22 Chemiprokasei Kaisha Ltd Novel triarylboron derivative and organic electroluminescent device containing the same
JP5326280B2 (en) * 2006-06-15 2013-10-30 東レ株式会社 Light emitting device material and light emitting device
JP5544775B2 (en) * 2008-07-29 2014-07-09 住友化学株式会社 Composition containing phosphorescent compound and light emitting device using the composition
CN101812057B (en) * 2009-02-19 2014-04-23 株式会社半导体能源研究所 Oxadiazole derivative, and light-emitting element and light-emitting device using oxadiazole derivative
JP5709389B2 (en) 2009-03-20 2015-04-30 株式会社半導体エネルギー研究所 Oxadiazole derivative, light-emitting element, light-emitting device, and electronic device
DE102009053645A1 (en) * 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent device
US9073948B2 (en) * 2010-05-14 2015-07-07 Universal Display Corporation Azaborine compounds as host materials and dopants for PHOLEDs
JP5379179B2 (en) * 2011-03-17 2013-12-25 コニカミノルタ株式会社 Organic electroluminescence element and display device
JP5129359B2 (en) * 2011-03-17 2013-01-30 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP2013004722A (en) * 2011-06-16 2013-01-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
CN103896973B (en) * 2014-04-11 2018-01-30 中国科学院理化技术研究所 Di (trimethyl phenyl) boron derivative and application thereof in white organic electroluminescent diode
JP2016092320A (en) * 2014-11-10 2016-05-23 コニカミノルタ株式会社 Organic electroluminescent element and lighting device
JP6815764B2 (en) * 2016-06-28 2021-01-20 株式会社日立製作所 Weld monitoring system
KR102098920B1 (en) * 2018-03-08 2020-04-10 대주전자재료 주식회사 Organic compound comprising boron and organic electroluminescent device comprising the same
CN110003258A (en) * 2019-04-30 2019-07-12 上海天马有机发光显示技术有限公司 Compound, display panel and display device
CN110078754A (en) * 2019-05-27 2019-08-02 上海天马有机发光显示技术有限公司 Compound, display panel and display device
KR102279134B1 (en) * 2021-01-22 2021-07-19 (주)랩토 Organic electroluminescence device and organic compound for organic electroluminescence device
CN113372370B (en) * 2021-06-30 2023-03-03 武汉天马微电子有限公司 Organic compound and application thereof
CN114957299B (en) * 2022-02-24 2024-04-09 川北医学院 Fluorescent probe for detecting apoptotic cells and preparation method thereof
CN117603241A (en) * 2023-11-24 2024-02-27 重庆沃肯新材料科技股份有限公司 Triarylboron organic compound, preparation method thereof and application thereof as organic photoinitiator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11950492B2 (en) 2019-01-29 2024-04-02 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11502259B2 (en) 2019-03-05 2022-11-15 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Also Published As

Publication number Publication date
JP2001093670A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP4428772B2 (en) Organic electroluminescence device
JP4770033B2 (en) Organic electroluminescence device
JP4883217B2 (en) Organic electroluminescence device
JP4810687B2 (en) Organic electroluminescence element and display device
JP4464070B2 (en) Arylamine compound and organic electroluminescence device using the same
JP2001160488A (en) Organic electroluminescent element
JP2003123983A (en) Organic electroluminescent element
WO2002020459A1 (en) Novel styryl compounds and organic electroluminescent devices
JP3960131B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING THE SAME
JP4052024B2 (en) Organic electroluminescence element and display device
JP4026273B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3968966B2 (en) Organic electroluminescence device
JP4300788B2 (en) Organic electroluminescence element and display device
JP3994799B2 (en) Organic electroluminescence element and display device
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4442114B2 (en) Organic electroluminescence element and display device
JP3642606B2 (en) Organic EL device
JP4211211B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR FORMING METAL COMPLEX FOR ORGANIC ELECTROLUMINESCENT DEVICE
JP4082098B2 (en) Organic electroluminescence device and full-color display device
JP4192152B2 (en) Organic electroluminescence device
JP2001064640A (en) Material for organic electroluminescence element and organic electroluminescence element by using the same
JP2001081453A (en) Organic electroluminescent element
JPH0873443A (en) Pyrazine derivative, organic electroluminescence device containing the same, and method for producing the pyrazine derivative
CN100334065C (en) Peropyrene compound, organic electroluminescent element and organic electroluminescent display
JP4586259B2 (en) Red organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061228

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees