US2423922A - Piezoelectric transducer - Google Patents
Piezoelectric transducer Download PDFInfo
- Publication number
- US2423922A US2423922A US47196643A US2423922A US 2423922 A US2423922 A US 2423922A US 47196643 A US47196643 A US 47196643A US 2423922 A US2423922 A US 2423922A
- Authority
- US
- United States
- Prior art keywords
- foil
- sections
- conductive
- heating
- accomplished
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 238000000576 coating method Methods 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 15
- 239000004020 conductor Substances 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 239000011888 foil Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 6
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011717 all-trans-retinol Substances 0.000 description 1
- 235000019169 all-trans-retinol Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/45—Joining of substantially the whole surface of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/3408—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
- B29C65/3412—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/3444—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip
- B29C65/3448—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip said ribbon, band or strip being perforated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3468—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/36—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
- B29C65/3604—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
- B29C65/3608—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
- B29C65/3612—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/36—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
- B29C65/3604—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
- B29C65/3644—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint being a ribbon, band or strip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/36—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
- B29C65/3604—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
- B29C65/3656—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint being a layer of a multilayer part to be joined, e.g. for joining plastic-metal laminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/303—Particular design of joint configurations the joint involving an anchoring effect
- B29C66/3034—Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
- B29C66/30341—Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes non-integral with the parts to be joined, e.g. making use of extra elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/832—Reciprocating joining or pressing tools
- B29C66/8322—Joining or pressing tools reciprocating along one axis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3472—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
- B29C65/3476—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/36—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
- B29C65/3672—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
- B29C65/3676—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1089—Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
- Y10T156/1092—All laminae planar and face to face
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
Definitions
- This invention relates to piezoelectric transducers and, more particularly, to transducers of the general type constituted by a plurality of sections of crystalline piezoelectrical material that are joined together to form a composite element which either bends, expands or contracts, twists, or otherwise deforms when subjected to electric potentials.
- a multiplate flexing element for example, is fabricated from two plates cut from a homogeneous Rochelle salt crystal, each of which carries upon at least one of its major faces an electrode comprising colloidal graphite.
- the electroded faces are cemented together with a lead extension, formed of thin metal, clamped between them.
- the cementing is a manual operation, inasmuch as each assembly must be treated individually, and the labor cost, naturally, is somewhat high.
- an object of this invention is to provide an improved method of manufacturing a piezoelectric transducer of the multiplate type, whereby the number of manual operations shall be minimized and the labor cost, accordingly, diminished.
- Another object is to provide a method of manufacturing transducers, of the type described, whereby a more uniform product shall be obtained.
- Another object is to provide a method of the type described that may be practiced through the utilization of automatic machinery.
- Another object is to provide an improved method of fabricating a piezoelectric transducer, of the type described, whereby an electroded crystal section may be provided with a conductive lead extension and, simultaneously, be joined to a similar section at a single operation.
- Another object is to provide a method for manufacturing multiplate transducers from Rochelle salt sections or the like.
- a still further object of the invention is to provide a method for manufacturing piezoelectric transducers from crystalline materials having dielectric constants lower than that of Rochelle salt.
- the said faces are caused to adhere to the opposite surfaces of a ribbon or strip of metallic foil or the like, through the action of heat and pressure upon a coating of material such as wax or the like, or a synthetic plastic, with which the ribbon has been supplied.
- the coating may be applied mechanically to the ribbon, thus obviating the manual step of applying cement to the electroded faces of the sections.
- the application of heat and pressure to the ribbon may be accomplished by automatic or semi-automatic machinery and continuous production can thus be obtained.
- Conductive contact between the surface electrodes of the sections and the ribbon may be assured by incorporating finely granulated conductive material, such as silver or the like, into the surface coatings of the ribbon or by Toughening the surface of the ribbon as by providing it with integral struck-out projections or teeth.
- finely granulated conductive material such as silver or the like
- the heating may be accomplished inductively or by passing an electric current, either alternating or unidirectional, directly through the foil from an appropriate source.
- Figure 1 is a view, partly perspective and partly diagrammatic, exemplifying the method of the invention.
- Figure 2 is a plan view of a strip of metal foil, or ribbon, having surface coatings of a material that softens under the influence of heat, to which nely divided conductive particles have been added;
- Figure 3 is a side view, in vertical section, of the ribbon taken along a line corresponding to the line III--III in Figure 2;
- Figure 4 is a plan view of a. strip of metal foil provided with integral protuberances adapted to project through the surface coatings for the purananas Adimensionalaccuracy:theyax'etobeconsidered solely as suggestive and explanatory of the method to be followed and not as views of actual transducers or apparatus. Equivalent elements, in all ilgures, are similarly designated.
- Refcrringnowtolligure lofthedrawings one embodiment of the method, shorn of non-essential steps, comprises 'ilrst forming a stack or sandwich, so to speak, from a lower section I of piesoelectric material, a similar upper section 3 and an intermediate strip l of metallic foil or thelike which carries an upper coating-1 and a lower coating (not shown) of material that soltens and becomes "tacky" under the influence of .heat but which is substantially rigid after cooling.
- the maior faces' of the crystal sections including the two that are in contact with the surface layersonthe foil,carryelectrodesofcol loidal graphite or the like, previously lPPlied thereto by employing the method disclosed in the Williams patent aforementioned. or they may carry metalliferous electrodes deposited thermionically by cathode disintegration or mechanically by a process such as tbe Shoop spray.
- a multiplicity of metallic particles may be intermingled with the surface coatingsonthefoiLasshowninHgureszand 3, or the foil itself may be roughened. or be furnished with a plurality of integral, struck-out projections II as shown in Figures 4 and 5.
- the temperature of the metal foil is next raised sutilcientlygto cause softening of the surface coatings thereon and pressure, indicated by the arrow in Figure 1, is applied for the purpose of squeezing out any surplus coating material and of causing the metallic particl, or the integral projections carried by the foil, to establish conductive cmnection between Vthe foil and substantially the entire electroded surface oi' each section.
- the foil In order to heat the foil, it may be connected to an appropriate potential source I, alternating or unidirectional, through a circuit comprising master switch Il, a rheostat Il, an automatic time switch il and an ammeter I1.
- the rheostat, ammeter and time switch are for the purpose of enabling limitation of the current to such a value and for such a pre-determined time pe riod that the piezoelectric properties of the crystal sections shall not be iniuriously affected.
- desig- Ainlligure,anoperator placesapluof crystal sections, interleaved with coated foil, in each empty pocket, seeing to it that the Asthcbeitmovesfromthelefttowardthe rishttbeendsofthefoilmaybecausedtoengage ilexiblecontact members orrollers 25, disposed inthepathoi'travelofthepockets,toapply momentarilyapentialtheretofromanappropriatesourcell.
- Thecooledaemblies maybe removed thereafter from the belt by another operata-,ortheymaybepermittedtodropoif intoasuitablebinllorthelike.
- Hotionofthebeltmaybecontinuousorimermittemandmeans (notshown) maybeemployed formovimthecmtactmemberslintoandout of mi; with the foil-extremities, as they pas, if desired Either alternatively or simultaneously with the heating by conduction the ioilsmaybeheatedinduotivelybydisposinga coiltlotcoppertubingorstransuppliedfrcm a suitable source 3l of high frequency potential, adjacent to the path of movement of the belt, as shown in Figure 7.
- a transducer constituted by a plurality of sections of crystalline material, having a much lower dielectric constant than' that of Rochelle salt, such as a primary phosphate. gives satisfactory results.
- the pre-electroding of the opposed surfaces may be dispensed with and the lead extensions themselves may serve as electrodes.
- the presence of a thin layer of wax or the like,l devoid of metallic particles, between the crystal face and the lead extension, is not objectionable.
- the disclosed method marks a decided advance in the fabrication of piezoelectric transducers of the multiplate type. Because of ⁇ the consolidation of several steps, formerly necessary, into a single operation, the new method enables a material reduction in the labor cost and, in addition, the transducers produced thereby have extremely uniform electrical characteristics.
- a method f fabricating a piezoelectric transducer which comprise selecting a section of piezoelectric material a face of which has an electrically conductive layer, applying to said face a conductive lead-extension having a surface coating of material capable of adhering to the conductive layer when subjected to heat and pressure, subjecting said surface to heart and pressure and simultaneously establishing a plurality of electrically conductive paths between said extension and said layer.
- steps in a method of fabricating transducer elements from at least two sections of crystalline piezoelectric material each of which has an extended substantially planar face that comprise placing a layer of electrically conductive material upon each of said extended faces, disposing :between said faces an extended conductive lead-in element each surface of which has a coating of material that softens under the influence of heat and pressure, urging said sections toward each other to exert pressure on said coatings, heating said lead-in element to a temperature sufllciently high to cause softening of said coatings and concurrently establishing a multiplicity of conductive paths between the layers of conductive material and the lead-in element.
- heating of the lead-in element is accomplished by causing an electric current to flow therein.
- heating of the adhesive material is accomplished by inductively causing an electric current to flow in the conductive lead-extension.
- heating of the adhesive material is accomplished by electrically connecting leads to the conductive lead-extension and by means of the leads passing electric current through said conductive lead-extension.
- heating of the coating material is accomplished by causing an electric current to flow in the foil-like electrode.
- heating of the coating material is accomplished by inductively causing an electric current to i'low in the foil-like electrode.
- heating of the coating material is accomplished by electrically connecting leads to the foil-like electrode and by means of the leads passing electric current through said foil-like electrode.
- heating of the electrical conductor means is accomplished by causing an electric current to flow in the electrical conductor means.
- heating of the electrical conductor means is accomplished by inductively causing an electric current to flow in the electrical conductor means.
- heating of the electrical conductor means is accomplished by electrically connecting leads to the conductor means and passing electric current through the said conductor means.
- a rst plate In a piezo crystalline multiplate assembly, a rst plate, electrode means on a surface of said first plate and in intimate electrical contact therewith, a second plate, electrode means on a surface of said second plate and in intimate electrical contact therewith, and electrically conductive sheet means having adhesive means on each 7 8 surface thereof connecting said nrst and said second plates together with their eiectroded turme m.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Description
July 15, 1947- J. P. ARNDT, JR 2,423,922
PIEzoELscTRIc 'rmmsnucnn Filed Jan. 11, 1945 2 Sheets-Sheet 1 ATTORNEY July 15, 1947 J. P. ARNDT, JR
PIEZOELECTRIC TRANSDUCER Filed Jan. 11. 1945V 2 sheets-sheet 2 :IIU:
I9 w 25 w w P2 #si #i .CS 1/ f I @j y Partnr/AL www INVENTOR. JOHN P ARNDT JR.
AT TOR/vtr Patented `uly l5, 19u47 v 2,423,922.` PmzoELEc'rmo 'rRANsDUcER John P. Arndt, Jr., Euclid, Ohio, assignor to The Brush Development Company, Cleveland, Ohio, a corporation of Ohio Application January 11, 1943, Serial No. 471,966
1s claims. l
This invention relates to piezoelectric transducers and, more particularly, to transducers of the general type constituted by a plurality of sections of crystalline piezoelectrical material that are joined together to form a composite element which either bends, expands or contracts, twists, or otherwise deforms when subjected to electric potentials.
Previous to the invention, `a number of methods had been proposed for joining to each other the pre-electroded major faces of a plurality of crystal sections and for providing a conductive, externally extending lead for the inner electrodes. One method that has achieved great commercial success is explained in the United States patent to A. L. W. Williams, No. 2,106,143.
In accordance with the teaching of the Williams patent, a multiplate flexing element, for example, is fabricated from two plates cut from a homogeneous Rochelle salt crystal, each of which carries upon at least one of its major faces an electrode comprising colloidal graphite. The electroded faces are cemented together with a lead extension, formed of thin metal, clamped between them. The cementing is a manual operation, inasmuch as each assembly must be treated individually, and the labor cost, naturally, is somewhat high.
One successful cement that has been employed is Rochelle salt, melted in its own water of crystallization. However, it is expensive and, furthermore, it is somewhat ydifficult t`o handle.
Accordingly, an object of this invention is to provide an improved method of manufacturing a piezoelectric transducer of the multiplate type, whereby the number of manual operations shall be minimized and the labor cost, accordingly, diminished.
Another object is to provide a method of manufacturing transducers, of the type described, whereby a more uniform product shall be obtained.
Another object is to provide a method of the type described that may be practiced through the utilization of automatic machinery.
Another object is to provide an improved method of fabricating a piezoelectric transducer, of the type described, whereby an electroded crystal section may be provided with a conductive lead extension and, simultaneously, be joined to a similar section at a single operation.
Another object is to provide a method for manufacturing multiplate transducers from Rochelle salt sections or the like.
A still further object of the invention is to provide a method for manufacturing piezoelectric transducers from crystalline materials having dielectric constants lower than that of Rochelle salt.
Briefly, in accordance with the invention, instead of employing cement for the purpose of joining together the pre-electroded faces of a plurality of crystal sections, the said faces are caused to adhere to the opposite surfaces of a ribbon or strip of metallic foil or the like, through the action of heat and pressure upon a coating of material such as wax or the like, or a synthetic plastic, with which the ribbon has been supplied. The coating may be applied mechanically to the ribbon, thus obviating the manual step of applying cement to the electroded faces of the sections. Furthermore, the application of heat and pressure to the ribbon may be accomplished by automatic or semi-automatic machinery and continuous production can thus be obtained.
Conductive contact between the surface electrodes of the sections and the ribbon may be assured by incorporating finely granulated conductive material, such as silver or the like, into the surface coatings of the ribbon or by Toughening the surface of the ribbon as by providing it with integral struck-out projections or teeth.
The heating may be accomplished inductively or by passing an electric current, either alternating or unidirectional, directly through the foil from an appropriate source.
The novel features considered characteristic yof the invention are set forth with particularity in the appended claims. The invention itself, however, both as to its organization and its method of operation, together with additional objects and advantages thereof, will be fully apparent from the following description of certain specific embodiment-s thereof, when read in connection with the accompanying drawings, wherein:
Figure 1 is a view, partly perspective and partly diagrammatic, exemplifying the method of the invention.
Figure 2 is a plan view of a strip of metal foil, or ribbon, having surface coatings of a material that softens under the influence of heat, to which nely divided conductive particles have been added;
Figure 3 is a side view, in vertical section, of the ribbon taken along a line corresponding to the line III--III in Figure 2;
Figure 4 is a plan view of a. strip of metal foil provided with integral protuberances adapted to project through the surface coatings for the purananas Adimensionalaccuracy:theyax'etobeconsidered solely as suggestive and explanatory of the method to be followed and not as views of actual transducers or apparatus. Equivalent elements, in all ilgures, are similarly designated.
Refcrringnowtolligure lofthedrawings,one embodiment of the method, shorn of non-essential steps, comprises 'ilrst forming a stack or sandwich, so to speak, from a lower section I of piesoelectric material, a similar upper section 3 and an intermediate strip l of metallic foil or thelike which carries an upper coating-1 and a lower coating (not shown) of material that soltens and becomes "tacky" under the influence of .heat but which is substantially rigid after cooling. The maior faces' of the crystal sections, including the two that are in contact with the surface layersonthe foil,carryelectrodesofcol loidal graphite or the like, previously lPPlied thereto by employing the method disclosed in the Williams patent aforementioned. or they may carry metalliferous electrodes deposited thermionically by cathode disintegration or mechanically by a process such as tbe Shoop spray.
A multiplicity of metallic particles, preferably angular, may be intermingled with the surface coatingsonthefoiLasshowninHgureszand 3, or the foil itself may be roughened. or be furnished with a plurality of integral, struck-out projections II as shown in Figures 4 and 5.
After the stack has been assembled, the temperature of the metal foil is next raised sutilcientlygto cause softening of the surface coatings thereon and pressure, indicated by the arrow in Figure 1, is applied for the purpose of squeezing out any surplus coating material and of causing the metallic particl, or the integral projections carried by the foil, to establish conductive cmnection between Vthe foil and substantially the entire electroded surface oi' each section.
In order to heat the foil, it may be connected to an appropriate potential source I, alternating or unidirectional, through a circuit comprising master switch Il, a rheostat Il, an automatic time switch il and an ammeter I1. The rheostat, ammeter and time switch are for the purpose of enabling limitation of the current to such a value and for such a pre-determined time pe riod that the piezoelectric properties of the crystal sections shall not be iniuriously affected.
`Itisdiillculttogivespeciiicvaluesfox'thecurrent necessary to soften the coating material and causeits adherence to the electroded crystal sections, or to state the time required Those factors can be determined only by experiment. inasmuch as they depend upon the particular coating material employed, upon the dimensions ofthesections anduponthe particularmenelectric material. With Rochelle salt sections, itisbestnottcexceedatemperature fortbefoil at which the piaoelectric sections are inwill eventually become available if not alin ccnildmtial use. l when the mentioned compound is employed the coating material an extremely strong bond the crystal sections is sedoes not appreciably deeven though the transducer is kept in over long periods of time.
bdt moves past a nm location, desig- Ainlligure,anoperatorplacesapluof crystal sections, interleaved with coated foil, in each empty pocket, seeing to it that the Asthcbeitmovesfromthelefttowardthe rishttbeendsofthefoilmaybecausedtoengage ilexiblecontact members orrollers 25, disposed inthepathoi'travelofthepockets,toapply momentarilyapentialtheretofromanappropriatesourcell. Thecooledaembliesmaybe removed thereafter from the belt by another operata-,ortheymaybepermittedtodropoif intoasuitablebinllorthelike.
Hotionofthebeltmaybecontinuousorimermittemandmeans (notshown) maybeemployed formovimthecmtactmemberslintoandout of mi; with the foil-extremities, as they pas, if desired Either alternatively or simultaneously with the heating by conduction the ioilsmaybeheatedinduotivelybydisposinga coiltlotcoppertubingorstransuppliedfrcm a suitable source 3l of high frequency potential, adjacent to the path of movement of the belt, as shown in Figure 7.
For some applications, a transducer constituted by a plurality of sections of crystalline material, having a much lower dielectric constant than' that of Rochelle salt, such as a primary phosphate. gives satisfactory results. In transducers of that type, the pre-electroding of the opposed surfaces may be dispensed with and the lead extensions themselves may serve as electrodes. The presence of a thin layer of wax or the like,l devoid of metallic particles, between the crystal face and the lead extension, is not objectionable.
From the foregoing, it will be obvious that the disclosed method marks a decided advance in the fabrication of piezoelectric transducers of the multiplate type. Because of` the consolidation of several steps, formerly necessary, into a single operation, the new method enables a material reduction in the labor cost and, in addition, the transducers produced thereby have extremely uniform electrical characteristics. j
Although several alternative embodiments of the invention have been illustrated and described, the inventor is fully aware of the fact that many modifications thereof will be at once apparent to those skilled in the art. The invention, therefore, is not to be restricted except insofar as is necessitated by the prior art and by the spirit of the appended claims. l
What is claimed is:
1. The steps in a method f fabricating a piezoelectric transducer which comprise selecting a section of piezoelectric material a face of which has an electrically conductive layer, applying to said face a conductive lead-extension having a surface coating of material capable of adhering to the conductive layer when subjected to heat and pressure, subjecting said surface to heart and pressure and simultaneously establishing a plurality of electrically conductive paths between said extension and said layer.
2. The steps in a method of fabricating transducer elements from at least two sections of crystalline piezoelectric material each of which has an extended substantially planar face, that comprise placing a layer of electrically conductive material upon each of said extended faces, disposing :between said faces an extended conductive lead-in element each surface of which has a coating of material that softens under the influence of heat and pressure, urging said sections toward each other to exert pressure on said coatings, heating said lead-in element to a temperature sufllciently high to cause softening of said coatings and concurrently establishing a multiplicity of conductive paths between the layers of conductive material and the lead-in element.
3. The method as defined in claim 2, characterized in this: that heating of the lead-in element is accomplished by causing an electric current to flow therein.
4. 'I'he method as defined in claim 2, characterized in this: that heating of the lead-in element is accomplished inductively.
5. 'I'he steps in a method of fabricating transducer elements from at least two sections of crystalline piezoelectric material each of which has an extended substantially planar face, that comprises disposing between said faces an extended foil-like electrode each surface of which has a coating of material that softens under the iniluence of heat, urging said sections toward each other to exert pressure on said electrode, heating said electroded face and the conductor means to i approach'sufflciently close to each other to establish a plurality of electrically conductive paths between said conductor means and the electroded face of said piezoelectric material, and thereafter cooling said electrical conductor means to cause said conductor means to adhere to said piezoelectric material.
7. The method as set forth in claim 1 further characterized in this: that heating of the adhesive material is accomplished by causing an elec-,r` .c
tric current to flow in the conductive lead-extension.
8. The method as set forth in claim 1 further characterized in this: that heating of the adhesive material is accomplished by inductively causing an electric current to flow in the conductive lead-extension. y
9. The method as set forth in claim 1 further characterized in this: that heating of the adhesive material is accomplished by electrically connecting leads to the conductive lead-extension and by means of the leads passing electric current through said conductive lead-extension.
10. The method as set forth in claim 5 further characterized in this: that heating of the coating material is accomplished by causing an electric current to flow in the foil-like electrode.
11. l'I'he method as set forth in claim 5 further characterized in this: that heating of the coating material is accomplished by inductively causing an electric current to i'low in the foil-like electrode.
12. The method as set forth in claim 5 further characterized in this: that heating of the coating material is accomplished by electrically connecting leads to the foil-like electrode and by means of the leads passing electric current through said foil-like electrode.
13. The invention as set forth in claim 6 further characterized in this: that heating of the electrical conductor means is accomplished by causing an electric current to flow in the electrical conductor means.
14. The invention as set forth in claim 6 further characterized inthis: that heating of the electrical conductor means is accomplished by inductively causing an electric current to flow in the electrical conductor means.
15. The invention as set forth in claim.6 further characterized in this: that heating of the electrical conductor means is accomplished by electrically connecting leads to the conductor means and passing electric current through the said conductor means.
16. In a piezo crystalline multiplate assembly, a rst plate, electrode means on a surface of said first plate and in intimate electrical contact therewith, a second plate, electrode means on a surface of said second plate and in intimate electrical contact therewith, and electrically conductive sheet means having adhesive means on each 7 8 surface thereof connecting said nrst and said second plates together with their eiectroded turme m. fam in face-to-fa relationship, md sheet The following references are of record in the means including a plurality of integral eiectriille of this patent: cally conductive portions extending at angles to s the plane of said sheet, said integral portions UNITED STATES PATENTS extending through said adhesive means and mak- Number Name Date ing electrical contact between said sheet and the Re. 20.213 Boyer Dec. 22. 1936 said surface electrode means on said first and 1.995.257 Sawyer Mar. 19, 1935 said second plates oi piezoelectric material. li) 2,324,024 Rell-m July 13. 1943 FOREIGN PATWTS Number Country Date 180,787 Great Britain June 8, 1922 JOHN P. ARNDT, JR.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47196643 US2423922A (en) | 1943-01-11 | 1943-01-11 | Piezoelectric transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47196643 US2423922A (en) | 1943-01-11 | 1943-01-11 | Piezoelectric transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
US2423922A true US2423922A (en) | 1947-07-15 |
Family
ID=23873688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US47196643 Expired - Lifetime US2423922A (en) | 1943-01-11 | 1943-01-11 | Piezoelectric transducer |
Country Status (1)
Country | Link |
---|---|
US (1) | US2423922A (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2497665A (en) * | 1945-02-07 | 1950-02-14 | Brush Dev Co | Piezoelectric device |
US2521661A (en) * | 1947-10-11 | 1950-09-05 | Brush Dev Co | Electrotransducer element |
US2572215A (en) * | 1945-04-09 | 1951-10-23 | Gen Tire & Rubber Co | Bushing and method of making same |
US2671156A (en) * | 1950-10-19 | 1954-03-02 | Hazeltine Research Inc | Method of producing electrical crystal-contact devices |
US2675461A (en) * | 1949-07-29 | 1954-04-13 | Samuel E Leonard | Method and apparatus for heating metallic wire, bars, and strips |
US2689297A (en) * | 1951-03-10 | 1954-09-14 | Ohio Crankshaft Co | High-frequency inductor arrangement |
US2762116A (en) * | 1951-08-03 | 1956-09-11 | Us Gasket Company | Method of making metal-surfaced bodies |
US2771969A (en) * | 1952-11-26 | 1956-11-27 | Gulton Ind Inc | Method for joining metallic and ceramic members |
US2862092A (en) * | 1956-09-11 | 1958-11-25 | Sperry Prod Inc | Induction welding |
US2877363A (en) * | 1954-10-29 | 1959-03-10 | Tibbetts Lab Inc | Transducer leads |
US4243460A (en) * | 1978-08-15 | 1981-01-06 | Lundy Electronics & Systems, Inc. | Conductive laminate and method of producing the same |
US4349397A (en) * | 1978-04-24 | 1982-09-14 | Werner Sturm | Method and device for connecting pipe components made of weldable plastic |
US4530138A (en) * | 1982-09-30 | 1985-07-23 | Westinghouse Electric Corp. | Method of making a transducer assembly |
US4670074A (en) * | 1981-12-31 | 1987-06-02 | Thomson-Csf | Piezoelectric polymer transducer and process of manufacturing the same |
US4673450A (en) * | 1985-01-22 | 1987-06-16 | The Boeing Company | Method of welding together graphite fiber reinforced thermoplastic laminates |
US4786837A (en) * | 1987-05-05 | 1988-11-22 | Hoechst Celanese Corporation | Composite conformable sheet electrodes |
US4865674A (en) * | 1988-10-06 | 1989-09-12 | Elkhart Products Corporation | Method of connecting two thermoplastic pipes using a barbed metal welding sleeve |
US5389184A (en) * | 1990-12-17 | 1995-02-14 | United Technologies Corporation | Heating means for thermoplastic bonding |
US5444220A (en) * | 1991-10-18 | 1995-08-22 | The Boeing Company | Asymmetric induction work coil for thermoplastic welding |
US5486684A (en) * | 1995-01-03 | 1996-01-23 | The Boeing Company | Multipass induction heating for thermoplastic welding |
US5500511A (en) * | 1991-10-18 | 1996-03-19 | The Boeing Company | Tailored susceptors for induction welding of thermoplastic |
US5508496A (en) * | 1991-10-18 | 1996-04-16 | The Boeing Company | Selvaged susceptor for thermoplastic welding by induction heating |
US5556565A (en) * | 1995-06-07 | 1996-09-17 | The Boeing Company | Method for composite welding using a hybrid metal webbed composite beam |
US5571436A (en) * | 1991-10-15 | 1996-11-05 | The Boeing Company | Induction heating of composite materials |
US5573613A (en) * | 1995-01-03 | 1996-11-12 | Lunden; C. David | Induction thermometry |
WO1996040487A1 (en) * | 1995-06-07 | 1996-12-19 | The Boeing Company | Barbed susceptor for improving pulloff strength in welded thermoplastic composite structures |
US5624594A (en) * | 1991-04-05 | 1997-04-29 | The Boeing Company | Fixed coil induction heater for thermoplastic welding |
US5641422A (en) * | 1991-04-05 | 1997-06-24 | The Boeing Company | Thermoplastic welding of organic resin composites using a fixed coil induction heater |
US5645744A (en) * | 1991-04-05 | 1997-07-08 | The Boeing Company | Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5660669A (en) * | 1994-12-09 | 1997-08-26 | The Boeing Company | Thermoplastic welding |
US5705795A (en) * | 1995-06-06 | 1998-01-06 | The Boeing Company | Gap filling for thermoplastic welds |
US5710412A (en) * | 1994-09-28 | 1998-01-20 | The Boeing Company | Fluid tooling for thermoplastic welding |
EP0819515A1 (en) * | 1996-07-15 | 1998-01-21 | Siebolt Hettinga | Metal reinforced plastic article and method of forming same |
US5717191A (en) * | 1995-06-06 | 1998-02-10 | The Boeing Company | Structural susceptor for thermoplastic welding |
US5723849A (en) * | 1991-04-05 | 1998-03-03 | The Boeing Company | Reinforced susceptor for induction or resistance welding of thermoplastic composites |
US5728309A (en) * | 1991-04-05 | 1998-03-17 | The Boeing Company | Method for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5760379A (en) * | 1995-10-26 | 1998-06-02 | The Boeing Company | Monitoring the bond line temperature in thermoplastic welds |
US5793024A (en) * | 1991-04-05 | 1998-08-11 | The Boeing Company | Bonding using induction heating |
US5808281A (en) * | 1991-04-05 | 1998-09-15 | The Boeing Company | Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5829716A (en) * | 1995-06-07 | 1998-11-03 | The Boeing Company | Welded aerospace structure using a hybrid metal webbed composite beam |
US5847375A (en) * | 1991-04-05 | 1998-12-08 | The Boeing Company | Fastenerless bonder wingbox |
US5869814A (en) * | 1996-07-29 | 1999-02-09 | The Boeing Company | Post-weld annealing of thermoplastic welds |
US5902935A (en) * | 1996-09-03 | 1999-05-11 | Georgeson; Gary E. | Nondestructive evaluation of composite bonds, especially thermoplastic induction welds |
US5916469A (en) * | 1996-06-06 | 1999-06-29 | The Boeing Company | Susceptor integration into reinforced thermoplastic composites |
US6284089B1 (en) | 1997-12-23 | 2001-09-04 | The Boeing Company | Thermoplastic seam welds |
US6402881B1 (en) * | 1994-05-09 | 2002-06-11 | The Regents Of The University Of California | Process for electrically interconnecting electrodes |
US6602810B1 (en) | 1995-06-06 | 2003-08-05 | The Boeing Company | Method for alleviating residual tensile strain in thermoplastic welds |
DE102006047411A1 (en) * | 2006-09-29 | 2008-04-03 | Technische Universität Dresden | Transducer material module e.g. thermoplastic piezo-ceramic module, manufacturing method for e.g. vehicle construction, involves disconnecting function module for component as thermo-plastic composite compatible transducer material module |
WO2011069899A3 (en) * | 2009-12-08 | 2011-08-11 | Airbus Operations Gmbh | Method for connecting a fiber composite component to a structural component of an air and spacecraft, and a corresponding arrangement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB180787A (en) * | ||||
US1995257A (en) * | 1932-02-29 | 1935-03-19 | Charles B Sawyer | Piezo-electric device and method of producing same |
USRE20213E (en) * | 1927-05-06 | 1936-12-22 | Piezoelectric device | |
US2324024A (en) * | 1941-07-07 | 1943-07-13 | Brush Dev Co | Piezoelectric unit |
-
1943
- 1943-01-11 US US47196643 patent/US2423922A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB180787A (en) * | ||||
USRE20213E (en) * | 1927-05-06 | 1936-12-22 | Piezoelectric device | |
US1995257A (en) * | 1932-02-29 | 1935-03-19 | Charles B Sawyer | Piezo-electric device and method of producing same |
US2324024A (en) * | 1941-07-07 | 1943-07-13 | Brush Dev Co | Piezoelectric unit |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2497665A (en) * | 1945-02-07 | 1950-02-14 | Brush Dev Co | Piezoelectric device |
US2572215A (en) * | 1945-04-09 | 1951-10-23 | Gen Tire & Rubber Co | Bushing and method of making same |
US2521661A (en) * | 1947-10-11 | 1950-09-05 | Brush Dev Co | Electrotransducer element |
US2675461A (en) * | 1949-07-29 | 1954-04-13 | Samuel E Leonard | Method and apparatus for heating metallic wire, bars, and strips |
US2671156A (en) * | 1950-10-19 | 1954-03-02 | Hazeltine Research Inc | Method of producing electrical crystal-contact devices |
US2689297A (en) * | 1951-03-10 | 1954-09-14 | Ohio Crankshaft Co | High-frequency inductor arrangement |
US2762116A (en) * | 1951-08-03 | 1956-09-11 | Us Gasket Company | Method of making metal-surfaced bodies |
US2771969A (en) * | 1952-11-26 | 1956-11-27 | Gulton Ind Inc | Method for joining metallic and ceramic members |
US2877363A (en) * | 1954-10-29 | 1959-03-10 | Tibbetts Lab Inc | Transducer leads |
US2862092A (en) * | 1956-09-11 | 1958-11-25 | Sperry Prod Inc | Induction welding |
US4349397A (en) * | 1978-04-24 | 1982-09-14 | Werner Sturm | Method and device for connecting pipe components made of weldable plastic |
US4243460A (en) * | 1978-08-15 | 1981-01-06 | Lundy Electronics & Systems, Inc. | Conductive laminate and method of producing the same |
US4670074A (en) * | 1981-12-31 | 1987-06-02 | Thomson-Csf | Piezoelectric polymer transducer and process of manufacturing the same |
US4530138A (en) * | 1982-09-30 | 1985-07-23 | Westinghouse Electric Corp. | Method of making a transducer assembly |
US4673450A (en) * | 1985-01-22 | 1987-06-16 | The Boeing Company | Method of welding together graphite fiber reinforced thermoplastic laminates |
US4786837A (en) * | 1987-05-05 | 1988-11-22 | Hoechst Celanese Corporation | Composite conformable sheet electrodes |
US4865674A (en) * | 1988-10-06 | 1989-09-12 | Elkhart Products Corporation | Method of connecting two thermoplastic pipes using a barbed metal welding sleeve |
US5389184A (en) * | 1990-12-17 | 1995-02-14 | United Technologies Corporation | Heating means for thermoplastic bonding |
US5645744A (en) * | 1991-04-05 | 1997-07-08 | The Boeing Company | Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5808281A (en) * | 1991-04-05 | 1998-09-15 | The Boeing Company | Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5728309A (en) * | 1991-04-05 | 1998-03-17 | The Boeing Company | Method for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5793024A (en) * | 1991-04-05 | 1998-08-11 | The Boeing Company | Bonding using induction heating |
US7126096B1 (en) | 1991-04-05 | 2006-10-24 | Th Boeing Company | Resistance welding of thermoplastics in aerospace structure |
US5723849A (en) * | 1991-04-05 | 1998-03-03 | The Boeing Company | Reinforced susceptor for induction or resistance welding of thermoplastic composites |
US5847375A (en) * | 1991-04-05 | 1998-12-08 | The Boeing Company | Fastenerless bonder wingbox |
US6040563A (en) * | 1991-04-05 | 2000-03-21 | The Boeing Company | Bonded assemblies |
US5624594A (en) * | 1991-04-05 | 1997-04-29 | The Boeing Company | Fixed coil induction heater for thermoplastic welding |
US5641422A (en) * | 1991-04-05 | 1997-06-24 | The Boeing Company | Thermoplastic welding of organic resin composites using a fixed coil induction heater |
US5571436A (en) * | 1991-10-15 | 1996-11-05 | The Boeing Company | Induction heating of composite materials |
US5444220A (en) * | 1991-10-18 | 1995-08-22 | The Boeing Company | Asymmetric induction work coil for thermoplastic welding |
US5705796A (en) * | 1991-10-18 | 1998-01-06 | The Boeing Company | Reinforced composites formed using induction thermoplastic welding |
US5508496A (en) * | 1991-10-18 | 1996-04-16 | The Boeing Company | Selvaged susceptor for thermoplastic welding by induction heating |
US5500511A (en) * | 1991-10-18 | 1996-03-19 | The Boeing Company | Tailored susceptors for induction welding of thermoplastic |
US6402881B1 (en) * | 1994-05-09 | 2002-06-11 | The Regents Of The University Of California | Process for electrically interconnecting electrodes |
US5710412A (en) * | 1994-09-28 | 1998-01-20 | The Boeing Company | Fluid tooling for thermoplastic welding |
US5753068A (en) * | 1994-12-09 | 1998-05-19 | Mittleider; John A. | Thermoplastic welding articulated skate |
US5833799A (en) * | 1994-12-09 | 1998-11-10 | The Boeing Company | Articulated welding skate |
US5660669A (en) * | 1994-12-09 | 1997-08-26 | The Boeing Company | Thermoplastic welding |
US5486684A (en) * | 1995-01-03 | 1996-01-23 | The Boeing Company | Multipass induction heating for thermoplastic welding |
US5573613A (en) * | 1995-01-03 | 1996-11-12 | Lunden; C. David | Induction thermometry |
US5717191A (en) * | 1995-06-06 | 1998-02-10 | The Boeing Company | Structural susceptor for thermoplastic welding |
US6602810B1 (en) | 1995-06-06 | 2003-08-05 | The Boeing Company | Method for alleviating residual tensile strain in thermoplastic welds |
US5705795A (en) * | 1995-06-06 | 1998-01-06 | The Boeing Company | Gap filling for thermoplastic welds |
US5829716A (en) * | 1995-06-07 | 1998-11-03 | The Boeing Company | Welded aerospace structure using a hybrid metal webbed composite beam |
WO1996040487A1 (en) * | 1995-06-07 | 1996-12-19 | The Boeing Company | Barbed susceptor for improving pulloff strength in welded thermoplastic composite structures |
US5756973A (en) * | 1995-06-07 | 1998-05-26 | The Boeing Company | Barbed susceptor for improviing pulloff strength in welded thermoplastic composite structures |
US5556565A (en) * | 1995-06-07 | 1996-09-17 | The Boeing Company | Method for composite welding using a hybrid metal webbed composite beam |
US5760379A (en) * | 1995-10-26 | 1998-06-02 | The Boeing Company | Monitoring the bond line temperature in thermoplastic welds |
US5916469A (en) * | 1996-06-06 | 1999-06-29 | The Boeing Company | Susceptor integration into reinforced thermoplastic composites |
US5935475A (en) * | 1996-06-06 | 1999-08-10 | The Boeing Company | Susceptor integration into reinforced thermoplastic composites |
EP0819515A1 (en) * | 1996-07-15 | 1998-01-21 | Siebolt Hettinga | Metal reinforced plastic article and method of forming same |
US5925277A (en) * | 1996-07-29 | 1999-07-20 | The Boeing Company | Annealed thermoplastic weld |
US5869814A (en) * | 1996-07-29 | 1999-02-09 | The Boeing Company | Post-weld annealing of thermoplastic welds |
US5902935A (en) * | 1996-09-03 | 1999-05-11 | Georgeson; Gary E. | Nondestructive evaluation of composite bonds, especially thermoplastic induction welds |
US20020038687A1 (en) * | 1997-12-23 | 2002-04-04 | The Boeing Company | Thermoplastic seam welds |
US6284089B1 (en) | 1997-12-23 | 2001-09-04 | The Boeing Company | Thermoplastic seam welds |
DE102006047411A1 (en) * | 2006-09-29 | 2008-04-03 | Technische Universität Dresden | Transducer material module e.g. thermoplastic piezo-ceramic module, manufacturing method for e.g. vehicle construction, involves disconnecting function module for component as thermo-plastic composite compatible transducer material module |
WO2011069899A3 (en) * | 2009-12-08 | 2011-08-11 | Airbus Operations Gmbh | Method for connecting a fiber composite component to a structural component of an air and spacecraft, and a corresponding arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2423922A (en) | Piezoelectric transducer | |
US2388242A (en) | Piezoelectric transducer | |
US2487985A (en) | Thermoplastic conductive joint for flat cells | |
US2497665A (en) | Piezoelectric device | |
US2478857A (en) | Radio-frequency heating | |
US3616039A (en) | Method of making a laminated capacitor | |
US2393429A (en) | Piezoelectric device | |
JPH06271361A (en) | Joined body of insulator and conductor and joining method | |
US2521661A (en) | Electrotransducer element | |
JPH0740613B2 (en) | Method for manufacturing laminated piezoelectric material | |
CN108462935B (en) | Double-layer piezoelectric ceramic electroacoustic element and preparation method thereof | |
US2627534A (en) | Battery with conductive cement intercell connections | |
JPH0155097B2 (en) | ||
JP2508314B2 (en) | Method for manufacturing laminated piezoelectric element | |
JPS6239600B2 (en) | ||
CN111132393B (en) | Electric heating glass and manufacturing method thereof | |
JP803H (en) | Method for manufacturing plastic sheet products | |
JPS58178547A (en) | Electric part assembly and manufacture thereof | |
JPS5853839Y2 (en) | piezoelectric sounding body | |
JPS5856220A (en) | Magnetic head and its production | |
GB571904A (en) | Improvements in or relating to piezoelectric transducers | |
JPH0193209A (en) | Method for housing case of electronic component and case used for the same | |
JPH0496285A (en) | Laminated piezoelectric element | |
JPS5773512A (en) | Piezoelectric oscillator | |
JP2024068830A (en) | Electrode manufacturing method |