US2714930A - Apparatus for preventing paraffin deposition - Google Patents
Apparatus for preventing paraffin deposition Download PDFInfo
- Publication number
- US2714930A US2714930A US199813A US19981350A US2714930A US 2714930 A US2714930 A US 2714930A US 199813 A US199813 A US 199813A US 19981350 A US19981350 A US 19981350A US 2714930 A US2714930 A US 2714930A
- Authority
- US
- United States
- Prior art keywords
- tubing
- cable
- weighting member
- well
- electrically conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008021 deposition Effects 0.000 title description 10
- 239000012188 paraffin wax Substances 0.000 title description 6
- 230000005484 gravity Effects 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 2
- 239000003921 oil Substances 0.000 description 32
- 238000007789 sealing Methods 0.000 description 10
- 238000012856 packing Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 210000004907 gland Anatomy 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000010292 electrical insulation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- WKQCYNCZDDJXEK-UHFFFAOYSA-N simalikalactone C Natural products C1C(C23C)OC(=O)CC3C(C)C(=O)C(O)C2C2(C)C1C(C)C=C(OC)C2=O WKQCYNCZDDJXEK-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- -1 by electrical means Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011551 heat transfer agent Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
Definitions
- This invention relates generally to apparatus for electrically heating a flowing oil stream within a well bore. More particularly, this invention relates to an apparatus for electrically heating an upper portion of the column of oil flowing within the tubing of a flowing oil well.
- the apparatus of this invention permits a flowing well to be fitted with heating equipment without any necessity whatsoever for shutting-in the well. Since it has been found that deposition of paraffin in the Well bore equipment is serious only in about the uppermost 1,000 feet or so of the equipment, the apparatus of this invention is specifically designed for heating only the uppermost portion of the fiowing oil column thereby conserving electrical energy.
- this invention relates to a new apparatus for preventing paraffin deposition in the tubing of a well bore wherein only the upper portion of the tubing is subjected to heating.
- Such apparatus comprises a weight suspended within the upper part of the tubing on a cornbination supporting cable and resistance wire. Attached to the weight, or in the vicinity thereof, is a contacting device for electrically contacting the inner surface of the tubing.
- the weight and wire are inserted into the top of the tubing through any suitable sealing member for passing solid objects and wire into the tubing under seal.
- sealing means may be a system of resilient rubber seals having a center opening which is expandible under force to permit entry of the object while maintaining a pressure seal.
- the sealing means also provides electrical insulation between the body of the tubing and the resistance cable where the latter is not covered with electrical insulation.
- the electrical circuit for the resistance cable is provided by attaching a current source to the resistance cable whence the current flows through the wire to the contacting member in the vicinity of the weighting member, thence to the tubing whence it flows upwardly through the tubing to a grounded connection or other conductor and returns to the current source.
- Figure l shows a partial cross-sectional elevation view of the installation of the apparatus of this invention positioned Within a well bore.
- Figure 2 shows the combination of a weighting member, a contacting member, and resistance cable such as is employed in Figure l.
- Figure 3 shows a cross-sectional View of the resistance cable such as may be taken through the plane 3 3 of Figure 2, for example.
- Figure 4 shows an alternative modification of the weighting member and contacting member.
- Figure 5 shows a cross-sectional view of the weighting member-contacting member modication shown in Figure 4 taken through a plane 5 5.
- Figure 6 shows one modification of packing glandA member 28 of Figure l, which is adaptable for inserting the resistance cable and other members therethrough while maintaining a pressure seal between the upper and lower faces of the packing gland.
- Figure 7 shows a modification of the invention for inserting parts of the apparatus of this invention into a high pressure well wherein the Well is not killed during the inserting.
- well casing 11 extends downwardly from the earths surface 12 into bore hole 13 to the vicinity of the upper boundary of oil-bearing sand 14.
- Well casing 11 is capped with tubing head 15.
- Tubing 16 is suspended through the tubing head 15 downwardly within casing 11.
- Tubing 16 terminates at its lower end in opening 17 which permits oil from oil pool 18 to flow into the tubing and force its way under pressure through the tubing to production line 19 whence it is withdrawn.
- Gas production separating from oil pool 18 flows upwardly in the annular zone created by the well casing 11 and tubing 16 to the vicinity of earth surface 12 whence it is withdrawn through gas production line 20.
- weighting member 25 contacting member 26 and resistance cable 27 are insertable through packing gland member 28 without necessity of killing the Well.
- current source 30 passes electrical energy to transformer 31 whose secondary winding has been tapped at a series of points.
- the one terminal of the secondary winding of transformer 31 is connected through conductor 32 to resistance cable 27 at its upper end.
- Resistance cable 27 is supported by suitable means not shown,
- Contact 33 is adapted to be connected in sequence to the series of tapped windings of transformer 31 and passes electrical energy therefrom through conductor r'ce 34 to a ground connection on tubing head 15 which is in turny electrically grounded to tubing 16.
- Resistance cable 27 is electrically connected to contacting member 26 which in turn is electrically connected to tubing 16 by slidable contact therewith. A return path for the electrical energy to source 30 is thereby provided.
- resistance cable 27 is electrically connected to stationary sleeve 40 by suitable means not shown.
- Stationary sleeve is rigidly attached to weighting member 42 by securing member 41.
- Attached to stationary sleeve 40 are two or more radially extending spring contacting bows 43 and 44.
- Such bows comprise uninsulated electrical conductors, e. g., bare metal bow springs.
- the lower ends of bows 43 and 44 are in turn anchored to slidable sleeve 45 which is free to slide coaxially over the outer surface of Weighting member 42.
- the construction of bows 43 and 44 is such that their natural tension tends to pull slidable sleeve 45 upwardly toward stationary sleeve 40 with the resultant increase in the bowing of members 43 and 44.
- the central core of the resistance cable is preferably a steel strand or core of suitable dimensions and characteristics to support the weighting member which may be in the range of 200 to 1000 lbs.
- a plurality of conductors 51 for example copper wires, is stranded around, wound on, or supported by steel core 50.
- copper conductors 51 are wrapped in doublestranded glass or other electrical insulation.
- Conductors 51 are so constructed as to resist the flow of electricity therethrough, thereby generating heat which is transmitted to the surrounding oil.
- conductors 51 are wrapped with suitable high temperature electrical insulation which permits transmission of heat therethrough and protects cable 27 from electrically contacting tubing 16 and thereby short-circuiting resistance cable 27.
- contacting member 26 It is apparent that numerous modifications of electrical contacting means of the type employed in the petroleum lndustry, in electric logging operations and the like may be employed as contacting member 26.
- One alternative modification of such means comprises a series of spines which are curved to permit theirentry into a circumscribing member of small diameter and which expand as the diameter of the circumscribing member is increased and contract as the diameter is decreased.
- weighting member is supported by and electrically connected to resistance cable 61. Electrically and rigidly attached to weighting member 60 is sleeve 62 which in turn mounts flexible spines 63 and 64. Flexible spines 63, 64 and others not shown, expand to the inner wall of the tubing and make electrical contact therewith during variations in the level of weighting member 60.
- weighting member 60 is surrounded by electrically connected rigid sleeve 62 to which are attached electrically conducting iiexible spines 63, 64, 65 and 66, respectively.
- the flexible spines push outwardly against circumscribing tubing 67 and make electrical contact therewith.
- tubing 16 of Figure 1 may be tted with a packing gland to permit entry of the resistance wire, etc.
- packing gland 28 is fitted with a suitable retainer which holds resilient packing 71 in place.
- the center of packing 71 is equipped with a small expandible opening 72 through which the equipment including the weighting member, the contacting means, and the resistance cable are inserted.
- the expandible opening 72 is normally closed and seals the pressure within tubing 16.
- packing gland 28 forms a tight seal about it so that there is little pressure loss therethrough.
- the equipment may be inserted into the tubing through a specially created sealing zone.
- Tubing 80 which corresponds to tubing 16 of Figure l, is capped with a gate type control valve 81.
- Fitting 82 is screwed into valve 8l and sealing member S3 threads into fitting 82,
- the sealing member is fitted with a packing gland S5 through which the resistance cable is passed and which maintains a pressure seal.
- the contacting means and weighting assembly are squeezed into place, as shown, by compressing bows 43 and 44.
- With the apparatus in place within sealing member 83 the latter is attached to fitting 82 above closed gate valve 81.
- gate valve 81 is opened and the resistance cable is payed out by suitable means not shown to lower the contacting means and weighting member to the desired level.
- the arrangement is then employed in substantially the same manner as was described in connection with Figure l.
- the electrically resistant cable may suitably comprise about 1000 feet of No. 10 copper wire covered with a double glass wrap of electrical insulation wound about a steel core of suitable dimensions for supporting a 500 pound sinker bar or weighting member.
- the weighting member is fitted with an electrical contacting mechanism of the type shown in Figure l and Figure 2.
- About volts of electrical potential is supplied to cross the resistance cable and the tubing.
- the generation of thermal power at this rate is sufficient to prevent parain deposition in a flowing well producing barrels of oil per day when the average ground level temperature is in the vicinity of 70 F.
- alternating current inasmuch as such current is readily stepped up or down according to the changing requirements of the system.
- alternating currents ranging from 50 to 2000 volts, and which have frequencies in the range of 25 to 400 cycles per second may be employed.
- direct current it is preferable to employ voltages in the range of about 50 to 1000 volts.
- the size and electrical properties of the stranded copper wire or other resistance cable should be such that the major portion, such as at least 50% and preferably 90% of the generation of thermal energy occurs within the resistance cable. Accordingly, it is desirable to use relatively large copper wire in order to maintain a high current flow therethrough. Under these conditions the thermal energy is to a large extent generated in the resistance cable.
- the sinker bar or weighting means employed in this 'invention may be of any suitable shape or configuration and performs the task of weighting the resistance cable.
- the weighting assembly in general performs three functions, viz. it provides a tension on the cable so that it is drawn taut, it provides support for the contacting mechanism which contacts the tubing, and it serves to center the resistance cable in the bore hole, particularly at its lower end, and minimizes wear and tear on the cable during raising and lowering.
- the amount of heat generated in the resistance cable is generally determined by the characteristics of the oil being produced and the characteristics of the formation and the locale of the oil lield. Generally speaking, a temperature drop of only a few degrees Fahrenheit in the uppermost few thousand feet of tubing is suicient to cause an excessive accumulation of parain during continued operation of the well. In some cases the temperature of the formation is in the range of about 80 F. while the temperature in the oil pool may be in the range of about 70 F. and the atmospheric temperature around the well head may be as low as' 10 or 20 F. Under this type of situation it has been found preferable to supply an amount of heat to the oil in the last 500 or 1000 feet of ow which is sufcient to maintain the temperature in the range of about 70 F. and preferably not less than about 65 F.
- crude oil may flow from the formation at a given temperature T1 and will cool as it ows through relatively cooler formations toward the earth surface due to evaporation of gases, heat transfer with the cooler surrounding earth strata in the upper layers, etc.
- a wax and/or resin deposition begins when the oil cools below to a temperature T2 which is lower than T1. Progressive cooling below temperature T2 results in progressive deposits of wax and/ or resin.
- the oil flow generally reaches temperature T2 only during the uppermost 1000 or so of the well tubing.
- the heating of the oil flow by the process of this invention is so controlled that a temperature greater than the wax or resin deposition temperature T2 is maintained throughout the owing oil column and especially in the uppermost section of the flowing oil column.
- Oils which are prone to deposit wax, resins, etc., upon cooling have been found to be identifiable by their physical properties.
- the deposition is a function of the amount and the gravity of the residuum obtained after a Bureau of Mines Hempel distillation as described in The Analytical Distillation of Petroleum and its Products, U. S. Bur. Mines Bull. 207, pp. 4-19 (1922). It has been found that oils for which the value of the expression Per cent residuum A. P. I. gravity of residuum is less than 2.0, particularly less than 1.5, are prone to deposit solids.
- the method and apparatus of the present invention effects beneficial results in dealing with oils which are prone to deposit solids as determined by either of the above methods.
- the resistance cable may be so constructed that its electrical resistance is non-uniform and varies with respect to its length in order to vary the generation of thermal energy per unit distance so as to provide a constant temperature of the oil column owing therethrough independently of the level.
- an electrically conductive well tubing positioned within a well; a cable extending within said tubing and supporting at its lower end an electrically conductive weighting member adapted to be lowered into and withdrawn from said tubing, said cable being substantially uniformly electrically resistant throughout its length and being maintained taut by the action of gravity on said weighting member; an electrically conductive upper sleeve rigidly attached to said weighting member; an electrically conductive lower sleeve free to slide along said weighting member; a plurality of electrically conductive radially extending spring bows disposed radially around said weighting member and attached at their upper ends to said upper sleeve and at their lower ends to said lower sleeve, said bows being adapted to frictionally engage the inner walls of said tubing; and means for applying an electric potential between said cable and said tubing.
- an electrically conductive well tubing positioned within a well; a cable extending within said tubing and supporting at its lower end an electrically conductive weighting member adapted to be lowered into and withdrawn from said tubing, said cable comprising a center weight-supporting core, a substantially uniformly electrically resistant winding supported on the outer surface of said core, and means for electrically insulating said winding from said core, and said cable being maintained taut within said tubing by the force of gravity acting on said weighting member; a contacting member borne by said weighting member and adapted to provide electrical contact between said weighting member and said tubing; and means for applying an electrical potential between said cable and said tubing.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Insulated Conductors (AREA)
Description
C. A. CARPENTER APPARATUS FOR PREVENTING PARAFFIN DEPOSITION Aug. 9, 1955 Filed Deo. 8, 1950 United States Patent() APPARATUS FR PREVENTING PARAFFIN DEPOSITION Clayton A. Carpenter, Wilmington, Calif., assignor to Union Oil Company of California, Los Angeles, Calif., a corporation of California Application December 8, 1950, Serial No. 199,813
2 Claims. (Cl. 166-60) This invention relates generally to apparatus for electrically heating a flowing oil stream within a well bore. More particularly, this invention relates to an apparatus for electrically heating an upper portion of the column of oil flowing within the tubing of a flowing oil well.
Numerous methods have been employed in the prior art for heating oil wells such as by electrical means, heat transfer agents and the like. A considerable number of such inventions pertain to preventing paraffin deposition in the well bore equipment. In general, the employment of such methods and apparatus necessitates a general shutdown or killing of the well. Killing the well is highly undesirable since during the interval in which oil flow is shut in, the water in the flowing oil Within the formation becomes rather firmly attached to the formation in the vicinity thereby causing water logging and other difficulties.
The apparatus of this invention permits a flowing well to be fitted with heating equipment without any necessity whatsoever for shutting-in the well. Since it has been found that deposition of paraffin in the Well bore equipment is serious only in about the uppermost 1,000 feet or so of the equipment, the apparatus of this invention is specifically designed for heating only the uppermost portion of the fiowing oil column thereby conserving electrical energy.
It is therefore an object of this invention to heat a flowing oil column within the tubing from the earth surface to a short distance therebelow, for example 1,000 feet.
It is another object of this invention to provide an electrical resistance apparatus for heating an oil column within the tubing of the well bore whereby there is obtained a maximum transfer of heat to the flowing oil.
It is another object of this invention to provide an apparatus which is readily insertable into the tubing of a fiowing oil well without necessity of killing the well.
It is another object of this invention to employ a single cable to support a combination electrical contact to the tubing and weighting member and also to provide a resistance in the electrical circuit for the generation and transmission of thermal energy.
Other objects and advantages of this invention Will become apparent to those skilled in the art as the description thereof proceeds.
Briefly, this invention relates to a new apparatus for preventing paraffin deposition in the tubing of a well bore wherein only the upper portion of the tubing is subjected to heating. Such apparatus comprises a weight suspended within the upper part of the tubing on a cornbination supporting cable and resistance wire. Attached to the weight, or in the vicinity thereof, is a contacting device for electrically contacting the inner surface of the tubing. The weight and wire are inserted into the top of the tubing through any suitable sealing member for passing solid objects and wire into the tubing under seal. Such sealing means may be a system of resilient rubber seals having a center opening which is expandible under force to permit entry of the object while maintaining a pressure seal. The sealing means also provides electrical insulation between the body of the tubing and the resistance cable where the latter is not covered with electrical insulation. The electrical circuit for the resistance cable is provided by attaching a current source to the resistance cable whence the current flows through the wire to the contacting member in the vicinity of the weighting member, thence to the tubing whence it flows upwardly through the tubing to a grounded connection or other conductor and returns to the current source.
It is a particularly advantageous feature of the apparatus of this invention in that it employs a minimum of bulky equipment and lends itself to ready installation in the conventional flowing well. Furthermore, the insertion of the Weighting member, the contacting member, and the resistance cable through a sealing means eliminates any requirement of shutting-in the well during the installation.
Figure l shows a partial cross-sectional elevation view of the installation of the apparatus of this invention positioned Within a well bore.
Figure 2 shows the combination of a weighting member, a contacting member, and resistance cable such as is employed in Figure l.
Figure 3 shows a cross-sectional View of the resistance cable such as may be taken through the plane 3 3 of Figure 2, for example.
Figure 4 shows an alternative modification of the weighting member and contacting member.
Figure 5 shows a cross-sectional view of the weighting member-contacting member modication shown in Figure 4 taken through a plane 5 5.
Figure 6 shows one modification of packing glandA member 28 of Figure l, which is adaptable for inserting the resistance cable and other members therethrough while maintaining a pressure seal between the upper and lower faces of the packing gland.
Figure 7 shows a modification of the invention for inserting parts of the apparatus of this invention into a high pressure well wherein the Well is not killed during the inserting.
Referring now to Figure l, well casing 11 extends downwardly from the earths surface 12 into bore hole 13 to the vicinity of the upper boundary of oil-bearing sand 14. Well casing 11 is capped with tubing head 15. Tubing 16 is suspended through the tubing head 15 downwardly within casing 11. Tubing 16 terminates at its lower end in opening 17 which permits oil from oil pool 18 to flow into the tubing and force its way under pressure through the tubing to production line 19 whence it is withdrawn. Gas production separating from oil pool 18 flows upwardly in the annular zone created by the well casing 11 and tubing 16 to the vicinity of earth surface 12 whence it is withdrawn through gas production line 20.
In Figure 1 weighting member 25, contacting member 26 and resistance cable 27 are insertable through packing gland member 28 without necessity of killing the Well.
At the earth surface, current source 30 passes electrical energy to transformer 31 whose secondary winding has been tapped at a series of points. The one terminal of the secondary winding of transformer 31 is connected through conductor 32 to resistance cable 27 at its upper end. Resistance cable 27 is supported by suitable means not shown, Contact 33 is adapted to be connected in sequence to the series of tapped windings of transformer 31 and passes electrical energy therefrom through conductor r'ce 34 to a ground connection on tubing head 15 which is in turny electrically grounded to tubing 16.
Electrical energy from source 30 is thusly transmittable to resistance cable 27. Resistance cable 27 is electrically connected to contacting member 26 which in turn is electrically connected to tubing 16 by slidable contact therewith. A return path for the electrical energy to source 30 is thereby provided.
Referring now more particularly to Figure 2, resistance cable 27 is electrically connected to stationary sleeve 40 by suitable means not shown. Stationary sleeve is rigidly attached to weighting member 42 by securing member 41. Attached to stationary sleeve 40 are two or more radially extending spring contacting bows 43 and 44. Such bows comprise uninsulated electrical conductors, e. g., bare metal bow springs. The lower ends of bows 43 and 44 are in turn anchored to slidable sleeve 45 which is free to slide coaxially over the outer surface of Weighting member 42. The construction of bows 43 and 44 is such that their natural tension tends to pull slidable sleeve 45 upwardly toward stationary sleeve 40 with the resultant increase in the bowing of members 43 and 44.
In the arrangement described in Figure 2 it is apparent that the normal tendency of bows 43 and 44 when confined within a tubing of suitable relative dimension is to fill the confines of the zone of confinement and expand their outer section to touch the circumscribing tubing face. Accordingly, slidable sleeve 45 `moves upwardly and downwardly as the requirements of bows 43 and 44 change in accordance with changes in the diameter of the circumscribing environment.
Referring now to Figure 3, which shows a modiiication of the resistance cable 27 taken through the plane 3-3 of Figure 2, the central core of the resistance cable is preferably a steel strand or core of suitable dimensions and characteristics to support the weighting member which may be in the range of 200 to 1000 lbs. A plurality of conductors 51, for example copper wires, is stranded around, wound on, or supported by steel core 50. Preferably copper conductors 51 are wrapped in doublestranded glass or other electrical insulation. Conductors 51 are so constructed as to resist the flow of electricity therethrough, thereby generating heat which is transmitted to the surrounding oil. In the preferred modification, conductors 51 are wrapped with suitable high temperature electrical insulation which permits transmission of heat therethrough and protects cable 27 from electrically contacting tubing 16 and thereby short-circuiting resistance cable 27.
It is apparent that numerous modifications of electrical contacting means of the type employed in the petroleum lndustry, in electric logging operations and the like may be employed as contacting member 26. One alternative modification of such means comprises a series of spines which are curved to permit theirentry into a circumscribing member of small diameter and which expand as the diameter of the circumscribing member is increased and contract as the diameter is decreased.
Referring now to Figure 4, weighting member is supported by and electrically connected to resistance cable 61. Electrically and rigidly attached to weighting member 60 is sleeve 62 which in turn mounts flexible spines 63 and 64. Flexible spines 63, 64 and others not shown, expand to the inner wall of the tubing and make electrical contact therewith during variations in the level of weighting member 60.
Referring now to Figure 5, which carries the same numerical reference characters as Figure 4 and is a crosssectional view through plane S-S of Figure 4, weighting member 60 is surrounded by electrically connected rigid sleeve 62 to which are attached electrically conducting iiexible spines 63, 64, 65 and 66, respectively. The flexible spines push outwardly against circumscribing tubing 67 and make electrical contact therewith.
Referring now more particularly to Figure 6, tubing 16 of Figure 1 may be tted with a packing gland to permit entry of the resistance wire, etc. In Figure 6 packing gland 28 is fitted with a suitable retainer which holds resilient packing 71 in place. The center of packing 71 is equipped with a small expandible opening 72 through which the equipment including the weighting member, the contacting means, and the resistance cable are inserted. The expandible opening 72 is normally closed and seals the pressure within tubing 16. When the equipment is inserted, packing gland 28 forms a tight seal about it so that there is little pressure loss therethrough.
Referring now more particularly to Figure 7, the equipment may be inserted into the tubing through a specially created sealing zone. Tubing 80, which corresponds to tubing 16 of Figure l, is capped with a gate type control valve 81. Fitting 82 is screwed into valve 8l and sealing member S3 threads into fitting 82, In using this modiiication, the sealing member is fitted with a packing gland S5 through which the resistance cable is passed and which maintains a pressure seal. While the sealing member is detached from fitting 82, the contacting means and weighting assembly are squeezed into place, as shown, by compressing bows 43 and 44. With the apparatus in place within sealing member 83, the latter is attached to fitting 82 above closed gate valve 81. When sealing member 83 is secured, gate valve 81 is opened and the resistance cable is payed out by suitable means not shown to lower the contacting means and weighting member to the desired level. The arrangement is then employed in substantially the same manner as was described in connection with Figure l.
The electrically resistant cable may suitably comprise about 1000 feet of No. 10 copper wire covered with a double glass wrap of electrical insulation wound about a steel core of suitable dimensions for supporting a 500 pound sinker bar or weighting member. The weighting member is fitted with an electrical contacting mechanism of the type shown in Figure l and Figure 2. About volts of electrical potential is supplied to cross the resistance cable and the tubing. There is a current ow of about 91 amperes with the result that about 10 kilowatts of electrical power are converted to thermal energy. The generation of thermal power at this rate is sufficient to prevent parain deposition in a flowing well producing barrels of oil per day when the average ground level temperature is in the vicinity of 70 F.
In the application of this invention it is preferable to use alternating current inasmuch as such current is readily stepped up or down according to the changing requirements of the system. Thus alternating currents ranging from 50 to 2000 volts, and which have frequencies in the range of 25 to 400 cycles per second may be employed. When direct current is employed, it is preferable to employ voltages in the range of about 50 to 1000 volts.
The size and electrical properties of the stranded copper wire or other resistance cable should be such that the major portion, such as at least 50% and preferably 90% of the generation of thermal energy occurs within the resistance cable. Accordingly, it is desirable to use relatively large copper wire in order to maintain a high current flow therethrough. Under these conditions the thermal energy is to a large extent generated in the resistance cable.
The sinker bar or weighting means employed in this 'invention may be of any suitable shape or configuration and performs the task of weighting the resistance cable. The weighting assembly in general performs three functions, viz. it provides a tension on the cable so that it is drawn taut, it provides support for the contacting mechanism which contacts the tubing, and it serves to center the resistance cable in the bore hole, particularly at its lower end, and minimizes wear and tear on the cable during raising and lowering.
It should also be noted that by the method of 'this invention .the slack or tension created by expansion and contraction of the resistance cable arising from temperature fluctuations is continuously compensated for by the raising and lowering of the weighting member which maintains a constant tension on the cable.
With regard to the amount of heat generated in the resistance cable, such amount is generally determined by the characteristics of the oil being produced and the characteristics of the formation and the locale of the oil lield. Generally speaking, a temperature drop of only a few degrees Fahrenheit in the uppermost few thousand feet of tubing is suicient to cause an excessive accumulation of parain during continued operation of the well. In some cases the temperature of the formation is in the range of about 80 F. while the temperature in the oil pool may be in the range of about 70 F. and the atmospheric temperature around the well head may be as low as' 10 or 20 F. Under this type of situation it has been found preferable to supply an amount of heat to the oil in the last 500 or 1000 feet of ow which is sufcient to maintain the temperature in the range of about 70 F. and preferably not less than about 65 F.
Generally speaking, crude oil may flow from the formation at a given temperature T1 and will cool as it ows through relatively cooler formations toward the earth surface due to evaporation of gases, heat transfer with the cooler surrounding earth strata in the upper layers, etc.
With wax bearing oils and particularly with the limited class of oils described hereinafter, a wax and/or resin deposition begins when the oil cools below to a temperature T2 which is lower than T1. Progressive cooling below temperature T2 results in progressive deposits of wax and/ or resin. The oil flow generally reaches temperature T2 only during the uppermost 1000 or so of the well tubing. The heating of the oil flow by the process of this invention is so controlled that a temperature greater than the wax or resin deposition temperature T2 is maintained throughout the owing oil column and especially in the uppermost section of the flowing oil column.
Oils which are prone to deposit wax, resins, etc., upon cooling have been found to be identifiable by their physical properties. The deposition is a function of the amount and the gravity of the residuum obtained after a Bureau of Mines Hempel distillation as described in The Analytical Distillation of Petroleum and its Products, U. S. Bur. Mines Bull. 207, pp. 4-19 (1922). It has been found that oils for which the value of the expression Per cent residuum A. P. I. gravity of residuum is less than 2.0, particularly less than 1.5, are prone to deposit solids.
The tendency of an oil to deposit solids determined by the value of the expression:
(Cloud point in F of key fraction 2) (A. P. I. Gr. of the residuum) Per cent residuum is greater than 30, particularly greater than 50, are prone to deposit solids.
The method and apparatus of the present invention effects beneficial results in dealing with oils which are prone to deposit solids as determined by either of the above methods.
Where the heat radiation from the tubing and oil flow therethrough is non-uniform with respect to distance near the earth surface, the resistance cable may be so constructed that its electrical resistance is non-uniform and varies with respect to its length in order to vary the generation of thermal energy per unit distance so as to provide a constant temperature of the oil column owing therethrough independently of the level.
The foregoing disclosure of this invention is not to be considered as limiting since many variations may be made by those skilled in the art without departing from the spirit and scope of the following claims.
I claim:
1. In combination, an electrically conductive well tubing positioned within a well; a cable extending within said tubing and supporting at its lower end an electrically conductive weighting member adapted to be lowered into and withdrawn from said tubing, said cable being substantially uniformly electrically resistant throughout its length and being maintained taut by the action of gravity on said weighting member; an electrically conductive upper sleeve rigidly attached to said weighting member; an electrically conductive lower sleeve free to slide along said weighting member; a plurality of electrically conductive radially extending spring bows disposed radially around said weighting member and attached at their upper ends to said upper sleeve and at their lower ends to said lower sleeve, said bows being adapted to frictionally engage the inner walls of said tubing; and means for applying an electric potential between said cable and said tubing.
2. In combination, an electrically conductive well tubing positioned within a well; a cable extending within said tubing and supporting at its lower end an electrically conductive weighting member adapted to be lowered into and withdrawn from said tubing, said cable comprising a center weight-supporting core, a substantially uniformly electrically resistant winding supported on the outer surface of said core, and means for electrically insulating said winding from said core, and said cable being maintained taut within said tubing by the force of gravity acting on said weighting member; a contacting member borne by said weighting member and adapted to provide electrical contact between said weighting member and said tubing; and means for applying an electrical potential between said cable and said tubing.
References Cited in the file of this patent UNITED STATES PATENTS 1,327,269 Christians Jan. 6, 1920 1,546,467 Bennett July 21, 1925 1,646,599 Schaefer Oct. 25, 1927 1,715,592 Christians Jan. 4, 1929 1,764,213 Knox June 17, 1930 1,776,997 Downey Sept. 30, 1930 1,970,295 Fitzpatrick Aug. 14, 1934 2,244,256 Looman June 3, 1941 2,660,249 Jakosky Nov. 24, 1953
Claims (1)
1. IN COMBINATION, AN ELECTRICALLY CONDUCTIVE WELL TUBING POSITIONED WITHIN A WELL; A CABLE EXTENDING WITHIN SAID TUBING AND SUPPORTING AT ITS LOWER END AN ELECTRICALLY CONDUCTIVE WEIGHTING MEMBER ADAPTED TO BE LOWERED INTO AND WITHDRAWN FROM SAID TUBING, SAID CABLE BEING SUBSTANTIALLY UNIFORMLY ELECTRICALLY RESISTANT THROUGH ITS LENGTH AND BEING MAINTAINED TAUT BY THE ACTION OF GRAVITY ON SAID WEIGHTING MEMBER; AN ELECTRICALLY CONDUCTIVE UPPER SLEEVE RIGIDLY ATTACHED TO SAID WEIGHTING MEMBER; AN ELECTRICALLY CONDUCTIVE LOWER SLEEVE FREE TO SLIDE ALONG SAID WEIGHTING MEMBER; A PLURALITY OF ELECTRICALLY CONDUCTIVE RADIALLY EXTENDING SPRING BOWS DISPOSED RADIALLY AROUND SAID WEIGHTING MEMBER AND ATTACHED AT THEIR UPPER ENDS TO SAID UPPER SLEEVE AND AT THEIR LOWER ENDS TO SAID LOWER SLEEVE, SAID BOWS BEING ADAPTED TO FRICTIONALLY ENGAGE THE INNER WALLS OF TUBING; AND MEANS FOR APPLYING AN ELECTRIC POTENTIAL BETWEEN SAID CABLE AND SAID TUBING.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US199813A US2714930A (en) | 1950-12-08 | 1950-12-08 | Apparatus for preventing paraffin deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US199813A US2714930A (en) | 1950-12-08 | 1950-12-08 | Apparatus for preventing paraffin deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
US2714930A true US2714930A (en) | 1955-08-09 |
Family
ID=22739135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US199813A Expired - Lifetime US2714930A (en) | 1950-12-08 | 1950-12-08 | Apparatus for preventing paraffin deposition |
Country Status (1)
Country | Link |
---|---|
US (1) | US2714930A (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3092514A (en) * | 1959-05-25 | 1963-06-04 | Petro Electronics Corp | Method and apparatus for cleaning and thawing flow lines and the like |
US4716960A (en) * | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4911239A (en) * | 1988-04-20 | 1990-03-27 | Intra-Global Petroleum Reservers, Inc. | Method and apparatus for removal of oil well paraffin |
US6142707A (en) * | 1996-03-26 | 2000-11-07 | Shell Oil Company | Direct electric pipeline heating |
US6171025B1 (en) | 1995-12-29 | 2001-01-09 | Shell Oil Company | Method for pipeline leak detection |
US6179523B1 (en) | 1995-12-29 | 2001-01-30 | Shell Oil Company | Method for pipeline installation |
US6264401B1 (en) | 1995-12-29 | 2001-07-24 | Shell Oil Company | Method for enhancing the flow of heavy crudes through subsea pipelines |
US6315497B1 (en) | 1995-12-29 | 2001-11-13 | Shell Oil Company | Joint for applying current across a pipe-in-pipe system |
US20020029881A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US20030075318A1 (en) * | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US20030080604A1 (en) * | 2001-04-24 | 2003-05-01 | Vinegar Harold J. | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030079877A1 (en) * | 2001-04-24 | 2003-05-01 | Wellington Scott Lee | In situ thermal processing of a relatively impermeable formation in a reducing environment |
US20030098149A1 (en) * | 2001-04-24 | 2003-05-29 | Wellington Scott Lee | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US20030173081A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of an oil reservoir formation |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US6632047B2 (en) * | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US20030196801A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US6686745B2 (en) | 2001-07-20 | 2004-02-03 | Shell Oil Company | Apparatus and method for electrical testing of electrically heated pipe-in-pipe pipeline |
US6688900B2 (en) | 2002-06-25 | 2004-02-10 | Shell Oil Company | Insulating joint for electrically heated pipeline |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6707012B2 (en) | 2001-07-20 | 2004-03-16 | Shell Oil Company | Power supply for electrically heated subsea pipeline |
US6714018B2 (en) | 2001-07-20 | 2004-03-30 | Shell Oil Company | Method of commissioning and operating an electrically heated pipe-in-pipe subsea pipeline |
US20040060693A1 (en) * | 2001-07-20 | 2004-04-01 | Bass Ronald Marshall | Annulus for electrically heated pipe-in-pipe subsea pipeline |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6739803B2 (en) | 2001-07-20 | 2004-05-25 | Shell Oil Company | Method of installation of electrically heated pipe-in-pipe subsea pipeline |
US20040100273A1 (en) * | 2002-11-08 | 2004-05-27 | Liney David J. | Testing electrical integrity of electrically heated subsea pipelines |
US20050269093A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Variable frequency temperature limited heaters |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20070045266A1 (en) * | 2005-04-22 | 2007-03-01 | Sandberg Chester L | In situ conversion process utilizing a closed loop heating system |
US20070095536A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Cogeneration systems and processes for treating hydrocarbon containing formations |
US20070108201A1 (en) * | 2005-04-22 | 2007-05-17 | Vinegar Harold J | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration |
US20080035346A1 (en) * | 2006-04-21 | 2008-02-14 | Vijay Nair | Methods of producing transportation fuel |
US20080128134A1 (en) * | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US20090071652A1 (en) * | 2007-04-20 | 2009-03-19 | Vinegar Harold J | In situ heat treatment from multiple layers of a tar sands formation |
US20090189617A1 (en) * | 2007-10-19 | 2009-07-30 | David Burns | Continuous subsurface heater temperature measurement |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20100089584A1 (en) * | 2008-10-13 | 2010-04-15 | David Booth Burns | Double insulated heaters for treating subsurface formations |
US20100258265A1 (en) * | 2009-04-10 | 2010-10-14 | John Michael Karanikas | Recovering energy from a subsurface formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1327269A (en) * | 1919-06-09 | 1920-01-06 | George W Christians | Apparatus for use in sealing crevices in rock formations |
US1546467A (en) * | 1924-01-09 | 1925-07-21 | Joseph F Bennett | Oil or gas drilling mechanism |
US1646599A (en) * | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1715592A (en) * | 1926-09-11 | 1929-06-04 | George W Christians | Apparatus for sealing crevices in rock formations or the like |
US1764213A (en) * | 1927-02-21 | 1930-06-17 | Knox George Washington | Conductor for oil-well heaters |
US1776997A (en) * | 1928-09-10 | 1930-09-30 | Patrick V Downey | Oil-well heater |
US1970295A (en) * | 1927-11-19 | 1934-08-14 | Paraffin Heater Engineering Co | Apparatus for treating well fluids |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2660249A (en) * | 1949-11-18 | 1953-11-24 | John J Jakosky | Means for heating oil wells |
-
1950
- 1950-12-08 US US199813A patent/US2714930A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1327269A (en) * | 1919-06-09 | 1920-01-06 | George W Christians | Apparatus for use in sealing crevices in rock formations |
US1546467A (en) * | 1924-01-09 | 1925-07-21 | Joseph F Bennett | Oil or gas drilling mechanism |
US1646599A (en) * | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1715592A (en) * | 1926-09-11 | 1929-06-04 | George W Christians | Apparatus for sealing crevices in rock formations or the like |
US1764213A (en) * | 1927-02-21 | 1930-06-17 | Knox George Washington | Conductor for oil-well heaters |
US1970295A (en) * | 1927-11-19 | 1934-08-14 | Paraffin Heater Engineering Co | Apparatus for treating well fluids |
US1776997A (en) * | 1928-09-10 | 1930-09-30 | Patrick V Downey | Oil-well heater |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2660249A (en) * | 1949-11-18 | 1953-11-24 | John J Jakosky | Means for heating oil wells |
Cited By (466)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3092514A (en) * | 1959-05-25 | 1963-06-04 | Petro Electronics Corp | Method and apparatus for cleaning and thawing flow lines and the like |
US4716960A (en) * | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4911239A (en) * | 1988-04-20 | 1990-03-27 | Intra-Global Petroleum Reservers, Inc. | Method and apparatus for removal of oil well paraffin |
US6171025B1 (en) | 1995-12-29 | 2001-01-09 | Shell Oil Company | Method for pipeline leak detection |
US6179523B1 (en) | 1995-12-29 | 2001-01-30 | Shell Oil Company | Method for pipeline installation |
US6264401B1 (en) | 1995-12-29 | 2001-07-24 | Shell Oil Company | Method for enhancing the flow of heavy crudes through subsea pipelines |
US6315497B1 (en) | 1995-12-29 | 2001-11-13 | Shell Oil Company | Joint for applying current across a pipe-in-pipe system |
US6142707A (en) * | 1996-03-26 | 2000-11-07 | Shell Oil Company | Direct electric pipeline heating |
US6632047B2 (en) * | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US20020029881A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US20020033256A1 (en) * | 2000-04-24 | 2002-03-21 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US20020034380A1 (en) * | 2000-04-24 | 2002-03-21 | Maher Kevin Albert | In situ thermal processing of a coal formation with a selected moisture content |
US20020033280A1 (en) * | 2000-04-24 | 2002-03-21 | Schoeling Lanny Gene | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US20020036083A1 (en) * | 2000-04-24 | 2002-03-28 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US20020040173A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US20020038705A1 (en) * | 2000-04-24 | 2002-04-04 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US20020038710A1 (en) * | 2000-04-24 | 2002-04-04 | Maher Kevin Albert | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US20020038706A1 (en) * | 2000-04-24 | 2002-04-04 | Etuan Zhang | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US20020043405A1 (en) * | 2000-04-24 | 2002-04-18 | Vinegar Harold J. | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US20020043365A1 (en) * | 2000-04-24 | 2002-04-18 | Berchenko Ilya Emil | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US20020043367A1 (en) * | 2000-04-24 | 2002-04-18 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US20020046832A1 (en) * | 2000-04-24 | 2002-04-25 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US20020046837A1 (en) * | 2000-04-24 | 2002-04-25 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US20020050357A1 (en) * | 2000-04-24 | 2002-05-02 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US20020050356A1 (en) * | 2000-04-24 | 2002-05-02 | Vinegar Harold J. | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US20020053436A1 (en) * | 2000-04-24 | 2002-05-09 | Vinegar Harold J. | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US20020057905A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US20020062051A1 (en) * | 2000-04-24 | 2002-05-23 | Wellington Scott L. | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US20020062959A1 (en) * | 2000-04-24 | 2002-05-30 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US20020084074A1 (en) * | 2000-04-24 | 2002-07-04 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US20020096320A1 (en) * | 2000-04-24 | 2002-07-25 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US20020104654A1 (en) * | 2000-04-24 | 2002-08-08 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US20030006039A1 (en) * | 2000-04-24 | 2003-01-09 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US20030019626A1 (en) * | 2000-04-24 | 2003-01-30 | Vinegar Harold J. | In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio |
US20030051872A1 (en) * | 2000-04-24 | 2003-03-20 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US20030075318A1 (en) * | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US20090101346A1 (en) * | 2000-04-24 | 2009-04-23 | Shell Oil Company, Inc. | In situ recovery from a hydrocarbon containing formation |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20110088904A1 (en) * | 2000-04-24 | 2011-04-21 | De Rouffignac Eric Pierre | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7096941B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US7036583B2 (en) | 2000-04-24 | 2006-05-02 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US6588503B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In Situ thermal processing of a coal formation to control product composition |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US7017661B2 (en) | 2000-04-24 | 2006-03-28 | Shell Oil Company | Production of synthesis gas from a coal formation |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6997255B2 (en) | 2000-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US6994161B2 (en) | 2000-04-24 | 2006-02-07 | Kevin Albert Maher | In situ thermal processing of a coal formation with a selected moisture content |
US6994160B2 (en) | 2000-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US6991031B2 (en) | 2000-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US6973967B2 (en) | 2000-04-24 | 2005-12-13 | Shell Oil Company | Situ thermal processing of a coal formation using pressure and/or temperature control |
US6966372B2 (en) | 2000-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US6959761B2 (en) | 2000-04-24 | 2005-11-01 | Shell Oil Company | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US6953087B2 (en) | 2000-04-24 | 2005-10-11 | Shell Oil Company | Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6948563B2 (en) | 2000-04-24 | 2005-09-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US6923258B2 (en) | 2000-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6913078B2 (en) | 2000-04-24 | 2005-07-05 | Shell Oil Company | In Situ thermal processing of hydrocarbons within a relatively impermeable formation |
US6910536B2 (en) | 2000-04-24 | 2005-06-28 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6902004B2 (en) * | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a movable heating element |
US6902003B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US6896053B2 (en) | 2000-04-24 | 2005-05-24 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US6889769B2 (en) | 2000-04-24 | 2005-05-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US6880635B2 (en) | 2000-04-24 | 2005-04-19 | Shell Oil Company | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US20040015023A1 (en) * | 2000-04-24 | 2004-01-22 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6877554B2 (en) | 2000-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US6871707B2 (en) | 2000-04-24 | 2005-03-29 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6866097B2 (en) | 2000-04-24 | 2005-03-15 | Shell Oil Company | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US20040108111A1 (en) * | 2000-04-24 | 2004-06-10 | Vinegar Harold J. | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US20030142964A1 (en) * | 2001-04-24 | 2003-07-31 | Wellington Scott Lee | In situ thermal processing of an oil shale formation using a controlled heating rate |
US20030102125A1 (en) * | 2001-04-24 | 2003-06-05 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation in a reducing environment |
US20030102124A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal processing of a blending agent from a relatively permeable formation |
US20030111223A1 (en) * | 2001-04-24 | 2003-06-19 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation using horizontal heat sources |
US20040211554A1 (en) * | 2001-04-24 | 2004-10-28 | Vinegar Harold J. | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US20040211557A1 (en) * | 2001-04-24 | 2004-10-28 | Cole Anthony Thomas | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US20030102126A1 (en) * | 2001-04-24 | 2003-06-05 | Sumnu-Dindoruk Meliha Deniz | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US6877555B2 (en) | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US6880633B2 (en) | 2001-04-24 | 2005-04-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a desired product |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US7040397B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | Thermal processing of an oil shale formation to increase permeability of the formation |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US20030116315A1 (en) * | 2001-04-24 | 2003-06-26 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030173078A1 (en) * | 2001-04-24 | 2003-09-18 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a condensate |
US6915850B2 (en) | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US6918443B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6918442B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation in a reducing environment |
US20030164239A1 (en) * | 2001-04-24 | 2003-09-04 | Wellington Scott Lee | In situ thermal processing of an oil shale formation in a reducing environment |
US6923257B2 (en) | 2001-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a condensate |
US6929067B2 (en) | 2001-04-24 | 2005-08-16 | Shell Oil Company | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US20030131996A1 (en) * | 2001-04-24 | 2003-07-17 | Vinegar Harold J. | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US20030080604A1 (en) * | 2001-04-24 | 2003-05-01 | Vinegar Harold J. | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US6951247B2 (en) | 2001-04-24 | 2005-10-04 | Shell Oil Company | In situ thermal processing of an oil shale formation using horizontal heat sources |
US20030146002A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | Removable heat sources for in situ thermal processing of an oil shale formation |
US20030148894A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20030141067A1 (en) * | 2001-04-24 | 2003-07-31 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation to increase permeability of the formation |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US20030131993A1 (en) * | 2001-04-24 | 2003-07-17 | Etuan Zhang | In situ thermal processing of an oil shale formation with a selected property |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US20030079877A1 (en) * | 2001-04-24 | 2003-05-01 | Wellington Scott Lee | In situ thermal processing of a relatively impermeable formation in a reducing environment |
US20100270015A1 (en) * | 2001-04-24 | 2010-10-28 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US20030098149A1 (en) * | 2001-04-24 | 2003-05-29 | Wellington Scott Lee | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US20030098605A1 (en) * | 2001-04-24 | 2003-05-29 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation |
US7004251B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | In situ thermal processing and remediation of an oil shale formation |
US20030100451A1 (en) * | 2001-04-24 | 2003-05-29 | Messier Margaret Ann | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20030102130A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation with quality control |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US20030131995A1 (en) * | 2001-04-24 | 2003-07-17 | De Rouffignac Eric Pierre | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6991033B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing while controlling pressure in an oil shale formation |
US6991036B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | Thermal processing of a relatively permeable formation |
US6991032B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030141068A1 (en) * | 2001-04-24 | 2003-07-31 | Pierre De Rouffignac Eric | In situ thermal processing through an open wellbore in an oil shale formation |
US6997518B2 (en) | 2001-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing and solution mining of an oil shale formation |
US20030141066A1 (en) * | 2001-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of an oil shale formation while inhibiting coking |
US20030136559A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing while controlling pressure in an oil shale formation |
US6994169B2 (en) | 2001-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of an oil shale formation with a selected property |
US20030136558A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a desired product |
US6686745B2 (en) | 2001-07-20 | 2004-02-03 | Shell Oil Company | Apparatus and method for electrical testing of electrically heated pipe-in-pipe pipeline |
US6739803B2 (en) | 2001-07-20 | 2004-05-25 | Shell Oil Company | Method of installation of electrically heated pipe-in-pipe subsea pipeline |
US20040060693A1 (en) * | 2001-07-20 | 2004-04-01 | Bass Ronald Marshall | Annulus for electrically heated pipe-in-pipe subsea pipeline |
US6714018B2 (en) | 2001-07-20 | 2004-03-30 | Shell Oil Company | Method of commissioning and operating an electrically heated pipe-in-pipe subsea pipeline |
US6707012B2 (en) | 2001-07-20 | 2004-03-16 | Shell Oil Company | Power supply for electrically heated subsea pipeline |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US20040040715A1 (en) * | 2001-10-24 | 2004-03-04 | Wellington Scott Lee | In situ production of a blending agent from a hydrocarbon containing formation |
US20030173081A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of an oil reservoir formation |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US20030196801A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US20030196810A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | Treatment of a hydrocarbon containing formation after heating |
US20030201098A1 (en) * | 2001-10-24 | 2003-10-30 | Karanikas John Michael | In situ recovery from a hydrocarbon containing formation using one or more simulations |
US20050092483A1 (en) * | 2001-10-24 | 2005-05-05 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US20030205378A1 (en) * | 2001-10-24 | 2003-11-06 | Wellington Scott Lee | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US7461691B2 (en) | 2001-10-24 | 2008-12-09 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US20070209799A1 (en) * | 2001-10-24 | 2007-09-13 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7114566B2 (en) | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6688900B2 (en) | 2002-06-25 | 2004-02-10 | Shell Oil Company | Insulating joint for electrically heated pipeline |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US6937030B2 (en) | 2002-11-08 | 2005-08-30 | Shell Oil Company | Testing electrical integrity of electrically heated subsea pipelines |
US20040100273A1 (en) * | 2002-11-08 | 2004-05-27 | Liney David J. | Testing electrical integrity of electrically heated subsea pipelines |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US7357180B2 (en) | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US7383877B2 (en) | 2004-04-23 | 2008-06-10 | Shell Oil Company | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US20050269091A1 (en) * | 2004-04-23 | 2005-12-08 | Guillermo Pastor-Sanz | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US7490665B2 (en) | 2004-04-23 | 2009-02-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7481274B2 (en) | 2004-04-23 | 2009-01-27 | Shell Oil Company | Temperature limited heaters with relatively constant current |
US20050269077A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Start-up of temperature limited heaters using direct current (DC) |
US20050269089A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Temperature limited heaters using modulated DC power |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US20060289536A1 (en) * | 2004-04-23 | 2006-12-28 | Vinegar Harold J | Subsurface electrical heaters using nitride insulation |
US20050269093A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Variable frequency temperature limited heaters |
US7431076B2 (en) | 2004-04-23 | 2008-10-07 | Shell Oil Company | Temperature limited heaters using modulated DC power |
US7424915B2 (en) | 2004-04-23 | 2008-09-16 | Shell Oil Company | Vacuum pumping of conductor-in-conduit heaters |
US20050269094A1 (en) * | 2004-04-23 | 2005-12-08 | Harris Christopher K | Triaxial temperature limited heater |
US7510000B2 (en) | 2004-04-23 | 2009-03-31 | Shell Oil Company | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US20050269090A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US20050269095A1 (en) * | 2004-04-23 | 2005-12-08 | Fairbanks Michael D | Inhibiting reflux in a heated well of an in situ conversion system |
US20050269088A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Inhibiting effects of sloughing in wellbores |
US20050269313A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Temperature limited heaters with high power factors |
US20050269092A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Vacuum pumping of conductor-in-conduit heaters |
US7353872B2 (en) | 2004-04-23 | 2008-04-08 | Shell Oil Company | Start-up of temperature limited heaters using direct current (DC) |
US20060005968A1 (en) * | 2004-04-23 | 2006-01-12 | Vinegar Harold J | Temperature limited heaters with relatively constant current |
US7370704B2 (en) | 2004-04-23 | 2008-05-13 | Shell Oil Company | Triaxial temperature limited heater |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US20070144732A1 (en) * | 2005-04-22 | 2007-06-28 | Kim Dong S | Low temperature barriers for use with in situ processes |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US20070045268A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Varying properties along lengths of temperature limited heaters |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US20070045266A1 (en) * | 2005-04-22 | 2007-03-01 | Sandberg Chester L | In situ conversion process utilizing a closed loop heating system |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US20070108200A1 (en) * | 2005-04-22 | 2007-05-17 | Mckinzie Billy J Ii | Low temperature barrier wellbores formed using water flushing |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US20070045265A1 (en) * | 2005-04-22 | 2007-03-01 | Mckinzie Billy J Ii | Low temperature barriers with heat interceptor wells for in situ processes |
US20070108201A1 (en) * | 2005-04-22 | 2007-05-17 | Vinegar Harold J | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration |
US20070045267A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Subsurface connection methods for subsurface heaters |
US7575053B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | Low temperature monitoring system for subsurface barriers |
US7575052B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | In situ conversion process utilizing a closed loop heating system |
US20080217321A1 (en) * | 2005-04-22 | 2008-09-11 | Vinegar Harold J | Temperature limited heater utilizing non-ferromagnetic conductor |
US20070137856A1 (en) * | 2005-04-22 | 2007-06-21 | Mckinzie Billy J | Double barrier system for an in situ conversion process |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US7546873B2 (en) | 2005-04-22 | 2009-06-16 | Shell Oil Company | Low temperature barriers for use with in situ processes |
US20070133961A1 (en) * | 2005-04-22 | 2007-06-14 | Fairbanks Michael D | Methods and systems for producing fluid from an in situ conversion process |
US7527094B2 (en) | 2005-04-22 | 2009-05-05 | Shell Oil Company | Double barrier system for an in situ conversion process |
US20070133960A1 (en) * | 2005-04-22 | 2007-06-14 | Vinegar Harold J | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US20070133959A1 (en) * | 2005-04-22 | 2007-06-14 | Vinegar Harold J | Grouped exposed metal heaters |
US20070119098A1 (en) * | 2005-04-22 | 2007-05-31 | Zaida Diaz | Treatment of gas from an in situ conversion process |
US7500528B2 (en) | 2005-04-22 | 2009-03-10 | Shell Oil Company | Low temperature barrier wellbores formed using water flushing |
US20070131427A1 (en) * | 2005-10-24 | 2007-06-14 | Ruijian Li | Systems and methods for producing hydrocarbons from tar sands formations |
US20080107577A1 (en) * | 2005-10-24 | 2008-05-08 | Vinegar Harold J | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US20090301724A1 (en) * | 2005-10-24 | 2009-12-10 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20110168394A1 (en) * | 2005-10-24 | 2011-07-14 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US20070095536A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Cogeneration systems and processes for treating hydrocarbon containing formations |
US20070127897A1 (en) * | 2005-10-24 | 2007-06-07 | John Randy C | Subsurface heaters with low sulfidation rates |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US20070125533A1 (en) * | 2005-10-24 | 2007-06-07 | Minderhoud Johannes K | Methods of hydrotreating a liquid stream to remove clogging compounds |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20070131419A1 (en) * | 2005-10-24 | 2007-06-14 | Maria Roes Augustinus W | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20070131420A1 (en) * | 2005-10-24 | 2007-06-14 | Weijian Mo | Methods of cracking a crude product to produce additional crude products |
US20070221377A1 (en) * | 2005-10-24 | 2007-09-27 | Vinegar Harold J | Solution mining systems and methods for treating hydrocarbon containing formations |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US20080035347A1 (en) * | 2006-04-21 | 2008-02-14 | Brady Michael P | Adjusting alloy compositions for selected properties in temperature limited heaters |
US20080035348A1 (en) * | 2006-04-21 | 2008-02-14 | Vitek John M | Temperature limited heaters using phase transformation of ferromagnetic material |
US20080035705A1 (en) * | 2006-04-21 | 2008-02-14 | Menotti James L | Welding shield for coupling heaters |
US20080035346A1 (en) * | 2006-04-21 | 2008-02-14 | Vijay Nair | Methods of producing transportation fuel |
US20080173442A1 (en) * | 2006-04-21 | 2008-07-24 | Vinegar Harold J | Sulfur barrier for use with in situ processes for treating formations |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US20080173449A1 (en) * | 2006-04-21 | 2008-07-24 | Thomas David Fowler | Sour gas injection for use with in situ heat treatment |
US20100272595A1 (en) * | 2006-04-21 | 2010-10-28 | Shell Oil Company | High strength alloys |
US20080173444A1 (en) * | 2006-04-21 | 2008-07-24 | Francis Marion Stone | Alternate energy source usage for in situ heat treatment processes |
US20080174115A1 (en) * | 2006-04-21 | 2008-07-24 | Gene Richard Lambirth | Power systems utilizing the heat of produced formation fluid |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US20080173450A1 (en) * | 2006-04-21 | 2008-07-24 | Bernard Goldberg | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US20080038144A1 (en) * | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US20090014180A1 (en) * | 2006-10-20 | 2009-01-15 | George Leo Stegemeier | Moving hydrocarbons through portions of tar sands formations with a fluid |
US20080135253A1 (en) * | 2006-10-20 | 2008-06-12 | Vinegar Harold J | Treating tar sands formations with karsted zones |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US20090014181A1 (en) * | 2006-10-20 | 2009-01-15 | Vinegar Harold J | Creating and maintaining a gas cap in tar sands formations |
US20080142216A1 (en) * | 2006-10-20 | 2008-06-19 | Vinegar Harold J | Treating tar sands formations with dolomite |
US20080217015A1 (en) * | 2006-10-20 | 2008-09-11 | Vinegar Harold J | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US20080142217A1 (en) * | 2006-10-20 | 2008-06-19 | Roelof Pieterson | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US20080135254A1 (en) * | 2006-10-20 | 2008-06-12 | Vinegar Harold J | In situ heat treatment process utilizing a closed loop heating system |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20080135244A1 (en) * | 2006-10-20 | 2008-06-12 | David Scott Miller | Heating hydrocarbon containing formations in a line drive staged process |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US20080277113A1 (en) * | 2006-10-20 | 2008-11-13 | George Leo Stegemeier | Heating tar sands formations while controlling pressure |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US20080217003A1 (en) * | 2006-10-20 | 2008-09-11 | Myron Ira Kuhlman | Gas injection to inhibit migration during an in situ heat treatment process |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20080185147A1 (en) * | 2006-10-20 | 2008-08-07 | Vinegar Harold J | Wax barrier for use with in situ processes for treating formations |
US20100276141A1 (en) * | 2006-10-20 | 2010-11-04 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20080217004A1 (en) * | 2006-10-20 | 2008-09-11 | De Rouffignac Eric Pierre | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20080128134A1 (en) * | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US20090078461A1 (en) * | 2007-04-20 | 2009-03-26 | Arthur James Mansure | Drilling subsurface wellbores with cutting structures |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US20090071652A1 (en) * | 2007-04-20 | 2009-03-19 | Vinegar Harold J | In situ heat treatment from multiple layers of a tar sands formation |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US20090084547A1 (en) * | 2007-04-20 | 2009-04-02 | Walter Farman Farmayan | Downhole burner systems and methods for heating subsurface formations |
US20090090509A1 (en) * | 2007-04-20 | 2009-04-09 | Vinegar Harold J | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US20090095478A1 (en) * | 2007-04-20 | 2009-04-16 | John Michael Karanikas | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US20090095479A1 (en) * | 2007-04-20 | 2009-04-16 | John Michael Karanikas | Production from multiple zones of a tar sands formation |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US20090095480A1 (en) * | 2007-04-20 | 2009-04-16 | Vinegar Harold J | In situ heat treatment of a tar sands formation after drive process treatment |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US20090095477A1 (en) * | 2007-04-20 | 2009-04-16 | Scott Vinh Nguyen | Heating systems for heating subsurface formations |
US20090126929A1 (en) * | 2007-04-20 | 2009-05-21 | Vinegar Harold J | Treating nahcolite containing formations and saline zones |
US20090120646A1 (en) * | 2007-04-20 | 2009-05-14 | Dong Sub Kim | Electrically isolating insulated conductor heater |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US20090095476A1 (en) * | 2007-04-20 | 2009-04-16 | Scott Vinh Nguyen | Molten salt as a heat transfer fluid for heating a subsurface formation |
US20090321075A1 (en) * | 2007-04-20 | 2009-12-31 | Christopher Kelvin Harris | Parallel heater system for subsurface formations |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US20090200854A1 (en) * | 2007-10-19 | 2009-08-13 | Vinegar Harold J | Solution mining and in situ treatment of nahcolite beds |
US20090200031A1 (en) * | 2007-10-19 | 2009-08-13 | David Scott Miller | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US20090189617A1 (en) * | 2007-10-19 | 2009-07-30 | David Burns | Continuous subsurface heater temperature measurement |
US20090200025A1 (en) * | 2007-10-19 | 2009-08-13 | Jose Luis Bravo | High temperature methods for forming oxidizer fuel |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US20090194329A1 (en) * | 2007-10-19 | 2009-08-06 | Rosalvina Ramona Guimerans | Methods for forming wellbores in heated formations |
US20090194524A1 (en) * | 2007-10-19 | 2009-08-06 | Dong Sub Kim | Methods for forming long subsurface heaters |
US20090194269A1 (en) * | 2007-10-19 | 2009-08-06 | Vinegar Harold J | Three-phase heaters with common overburden sections for heating subsurface formations |
US20090194282A1 (en) * | 2007-10-19 | 2009-08-06 | Gary Lee Beer | In situ oxidation of subsurface formations |
US20090194333A1 (en) * | 2007-10-19 | 2009-08-06 | Macdonald Duncan | Ranging methods for developing wellbores in subsurface formations |
US20090272535A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Using tunnels for treating subsurface hydrocarbon containing formations |
US20100071904A1 (en) * | 2008-04-18 | 2010-03-25 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US20090272533A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US20090272578A1 (en) * | 2008-04-18 | 2009-11-05 | Macdonald Duncan Charles | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20100108310A1 (en) * | 2008-10-13 | 2010-05-06 | Thomas David Fowler | Offset barrier wells in subsurface formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US20100089584A1 (en) * | 2008-10-13 | 2010-04-15 | David Booth Burns | Double insulated heaters for treating subsurface formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US20100089586A1 (en) * | 2008-10-13 | 2010-04-15 | John Andrew Stanecki | Movable heaters for treating subsurface hydrocarbon containing formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US20100224368A1 (en) * | 2008-10-13 | 2010-09-09 | Stanley Leroy Mason | Deployment of insulated conductors for treating subsurface formations |
US20100096137A1 (en) * | 2008-10-13 | 2010-04-22 | Scott Vinh Nguyen | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100101784A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US20100101783A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
US20100108379A1 (en) * | 2008-10-13 | 2010-05-06 | David Alston Edbury | Systems and methods of forming subsurface wellbores |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US20100147522A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Systems and methods for treating a subsurface formation with electrical conductors |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US20100206570A1 (en) * | 2008-10-13 | 2010-08-19 | Ernesto Rafael Fonseca Ocampos | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US20100258265A1 (en) * | 2009-04-10 | 2010-10-14 | John Michael Karanikas | Recovering energy from a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US20100258290A1 (en) * | 2009-04-10 | 2010-10-14 | Ronald Marshall Bass | Non-conducting heater casings |
US20100258291A1 (en) * | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US20110042084A1 (en) * | 2009-04-10 | 2011-02-24 | Robert Bos | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US20100258309A1 (en) * | 2009-04-10 | 2010-10-14 | Oluropo Rufus Ayodele | Heater assisted fluid treatment of a subsurface formation |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2714930A (en) | Apparatus for preventing paraffin deposition | |
US2781851A (en) | Well tubing heater system | |
US4716960A (en) | Method and system for introducing electric current into a well | |
US4662437A (en) | Electrically stimulated well production system with flexible tubing conductor | |
US3149672A (en) | Method and apparatus for electrical heating of oil-bearing formations | |
US4570715A (en) | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature | |
US3207220A (en) | Electric well heater | |
CA2152521C (en) | Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits | |
CA1066613A (en) | Method for reducing power loss associated with electrical heating of a subterranean formation | |
US2660249A (en) | Means for heating oil wells | |
US3137347A (en) | In situ electrolinking of oil shale | |
US4730671A (en) | Viscous oil recovery using high electrical conductive layers | |
US3133592A (en) | Apparatus for the application of electrical energy to subsurface formations | |
US4484627A (en) | Well completion for electrical power transmission | |
US6112808A (en) | Method and apparatus for subterranean thermal conditioning | |
US3620300A (en) | Method and apparatus for electrically heating a subsurface formation | |
EP0317719A1 (en) | Heating systems for boreholes | |
CA2588366C (en) | Selective electromagnetic production tool | |
US5339898A (en) | Electromagnetic reservoir heating with vertical well supply and horizontal well return electrodes | |
US2982354A (en) | Paraffin removing device | |
CA2574320A1 (en) | Subterranean electro-thermal heating system and method | |
US20240254840A1 (en) | Multi-stage wireless completions | |
US2463590A (en) | Weight-carrying cable | |
US3589442A (en) | Well shock device | |
US4783585A (en) | Downhole electric steam or hot water generator for oil wells |