US3443144A - Infrared incandescent lamp - Google Patents
Infrared incandescent lamp Download PDFInfo
- Publication number
- US3443144A US3443144A US422683A US3443144DA US3443144A US 3443144 A US3443144 A US 3443144A US 422683 A US422683 A US 422683A US 3443144D A US3443144D A US 3443144DA US 3443144 A US3443144 A US 3443144A
- Authority
- US
- United States
- Prior art keywords
- envelope
- filaments
- lamps
- disposed
- lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K5/00—Lamps for general lighting
- H01K5/02—Lamps for general lighting with connections made at opposite ends, e.g. tubular lamp with axially arranged filament
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/18—Mountings or supports for the incandescent body
- H01K1/24—Mounts for lamps with connections at opposite ends, e.g. for tubular lamp
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/28—Envelopes; Vessels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0033—Heating devices using lamps
- H05B3/009—Heating devices using lamps heating devices not specially adapted for a particular application
Definitions
- This invention relates to incandescent lamps and particularly to those having tubular quartz envelopes in which filaments are disposed along the length of the envelope.
- tubular quartz-type incandescent lamps have been made with a generally cylindrical envelope and the filament has been disposed axially, extending throughout the entire length.
- Such lamps have operated well for infrared heating purposes, however, I have now discovered a modification of such lamps to improve the amount of irradiated heat.
- FIGURE 1 is a plan view of the dual filament, oval saped, quartz-type incandescent lamp of my invention and FIGURE 2 is a cross-sectional view taken along the lines 22 of FIGURE 1 showing particularly the disposition of the filaments and the cross-sectional shape of the envelope.
- the envelope 1 has a pair of conventional press seals 2 disposed at either end there of.
- a pair of filament supports 3 and 4 extend into the press seal and are attached to molybdenum foil sections 5 and '6. These foil sections are very thin, generally less than about 8X l0 inches, and go into tension when the quartz cools about them.
- Extending from the other side of the molybdenum foil sections are a pair of lead-in wires 7 and 8, the distal ends of which are disposed outside of the seal.
- a current conveying line 9 is attached to each of the lead-in wires 7 and 8 and is used to connect the lamps to a source of electricity.
- the two separate molybdenum foil sections shown can be joined together into one wide section and also a single lead-in line having about twice the diameter of one of the lead-in wires 7 or 8 can be substituted.
- two foil sections are used with two separate lead-in wires.
- Similar electrical connections are disposed in the press seal at the other end of the lamp.
- a pair of filaments 10 and 11 extend along the length of the lamp and are fitted upon filament supports 3 and 4 and similar filament supports at the other end.
- a series of spacers 12 are disposed along the length of the filament to prevent them from sagging against the quartz envelope.
- the filaments 10 and 11 are disposed inside of the quartz envelope 1.
- a spacer 12 is fitted about the filaments 10 and 11 and supports them inside of the lamp.
- these filaments are each mounted upon the axis of the half circle forming one portion of the oval. In this manner even heat distribution is obtained along the length of the envelope 1.
- a typical T-3 quartz envelope had a diameter of about inch.
- the ratio of the height to the width should be between about 1.25 to 1.7:1 for maximum efficiency.
- the width of the oval is about inch and the height is about /2 inch.
- the filament is sometimes of a coiled coil shape.
- the life of the lamp can be extended materially even when operating at excessively high wattages. For example, when testing a lamp having a round cross-section, and operating at 8,000 Watts, the average life was 15 minutes. When testing lamps having oval cross-sections, such as described "herein, the average life was minutes at 8,000 watts. The life of the lamps was measured from a point when the power was turned on to when the quartz deformed from the overload conditions. With the oval shape quartz lamps having two filaments in parallel, a 20 to 25% gain in wattage per linear inch can be realized before the softening point of the quartz is reached. Because the lamps have the same width as the round type, the same number of lamps can be placed in a grouping area even though they irradiate more heat. Therefore, the above described gain in wattage per linear inch can be realized in a lamp grouping per unit area.
- An incandescent lamp comprising: a tubular quartz envelope, said envelope having an oval-shaped cross section; two filaments disposed in said envelope, spaced from each other and extending parallelly along the length of said envelope; press seals disposed at either end of said envelope; means to support said filaments disposed in said press seals; means to convey current to said filaments in parallel.
Landscapes
- Resistance Heating (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
INFRARED mcgmosscmw LAMP Filed Dec. 31, 1964 ROBERT w. FREESE JR INVENTOR.
ATTORNEY United States Patent US. Cl. 313-315 Claims ABSTRACT OF THE DISCLOSURE This invention concerns infrared incandescent electric lamps having an oval-shaped quartz envelope, with two parallel tungsten filaments, extending the length of the lamp, and are mounted within said envelope.
This invention relates to incandescent lamps and particularly to those having tubular quartz envelopes in which filaments are disposed along the length of the envelope.
In the past, tubular quartz-type incandescent lamps have been made with a generally cylindrical envelope and the filament has been disposed axially, extending throughout the entire length. Such lamps have operated well for infrared heating purposes, however, I have now discovered a modification of such lamps to improve the amount of irradiated heat.
According to my invention I have discovered that if the envelope is modified to a generally oval shape with two filaments disposed and electrically connected in parallel, that materially higher operating wattages can be used. The seals in which the ends of the filaments are disposed are similar to those which are conventional in the art. Advantageously, through the use of the parallel filaments, higher heat density per unit area of envelope wall can be obtained. Moreover, a longer lamp life at higher wattage density per unit watt of current can be realized. Both of these advantages can be realized without modifying the structure of the fixture in which these lamps are installed and hence my new lamps are completely compatible and interchangeable with prior art lamps in existing installations.
In the prior art, techniques utilized to obtain higher wattages in the lamp were to use a very large diameter filament or to intertwist two or more filaments together on the same axis. The current that could be carried in lamps having axially disposed filament(s) was limited to 75 to 80% of the wall loading which is obtainable with the design of my invention. Moreover, the prior art designs utilized only one filament support through the seal at each end of the envelope for the filament. According to my invention, I mount each of the two filaments upon sep arate supports, thereby increasing the current carrying characteristics of the seal. The current to the filaments is distributed over a fairly large area and thereby provides excellent heat dissipation so that the seal will not break.
The many other objects, features and advantages of my invention will become manifest to those conversant with the art upon reading the following specification when taken in conjunction with the accompanying drawings wherein preferred embodiments of my incandescent lamp are shown and described by way of illustrative examples.
Of these drawings:
FIGURE 1 is a plan view of the dual filament, oval saped, quartz-type incandescent lamp of my invention and FIGURE 2 is a cross-sectional view taken along the lines 22 of FIGURE 1 showing particularly the disposition of the filaments and the cross-sectional shape of the envelope.
Referring now to FIGURE 1, the envelope 1 has a pair of conventional press seals 2 disposed at either end there of. A pair of filament supports 3 and 4 extend into the press seal and are attached to molybdenum foil sections 5 and '6. These foil sections are very thin, generally less than about 8X l0 inches, and go into tension when the quartz cools about them. Extending from the other side of the molybdenum foil sections are a pair of lead-in wires 7 and 8, the distal ends of which are disposed outside of the seal. A current conveying line 9 is attached to each of the lead-in wires 7 and 8 and is used to connect the lamps to a source of electricity. If desired, the two separate molybdenum foil sections shown can be joined together into one wide section and also a single lead-in line having about twice the diameter of one of the lead-in wires 7 or 8 can be substituted. Preferably, however, two foil sections are used with two separate lead-in wires. Frequently it is desirable to shield the outside of the press seal and the lead-in wires with a metal tip to prevent accidental damage of the exposed weld and the seal. Similar electrical connections are disposed in the press seal at the other end of the lamp.
A pair of filaments 10 and 11 extend along the length of the lamp and are fitted upon filament supports 3 and 4 and similar filament supports at the other end. A series of spacers 12 are disposed along the length of the filament to prevent them from sagging against the quartz envelope.
As shown in FIGURE 2, the filaments 10 and 11 are disposed inside of the quartz envelope 1. A spacer 12 is fitted about the filaments 10 and 11 and supports them inside of the lamp. Preferably, these filaments are each mounted upon the axis of the half circle forming one portion of the oval. In this manner even heat distribution is obtained along the length of the envelope 1.
In the lamps of the prior art, a typical T-3 quartz envelope had a diameter of about inch. With the envelope according to my invention I have found that the ratio of the height to the width should be between about 1.25 to 1.7:1 for maximum efficiency. Preferably the width of the oval is about inch and the height is about /2 inch. The filament is sometimes of a coiled coil shape.
When using the heater of my invention, the life of the lamp can be extended materially even when operating at excessively high wattages. For example, when testing a lamp having a round cross-section, and operating at 8,000 Watts, the average life was 15 minutes. When testing lamps having oval cross-sections, such as described "herein, the average life was minutes at 8,000 watts. The life of the lamps was measured from a point when the power was turned on to when the quartz deformed from the overload conditions. With the oval shape quartz lamps having two filaments in parallel, a 20 to 25% gain in wattage per linear inch can be realized before the softening point of the quartz is reached. Because the lamps have the same width as the round type, the same number of lamps can be placed in a grouping area even though they irradiate more heat. Therefore, the above described gain in wattage per linear inch can be realized in a lamp grouping per unit area.
It is apparent that changes and modifications may be made within the spirit and scope of the instant invention, but it is my intention, however, only to be limited by the spirit and scope of the appended claims.
As my invention I claim:
1. An incandescent lamp comprising: a tubular quartz envelope, said envelope having an oval-shaped cross section; two filaments disposed in said envelope, spaced from each other and extending parallelly along the length of said envelope; press seals disposed at either end of said envelope; means to support said filaments disposed in said press seals; means to convey current to said filaments in parallel.
2. The incandescent lamp according to claim 2 wherein the ratio of the height to the width of the envelope is between about 1125 to 1.75: 1.
3. The incandescent lamp according to claim 2 wherein there are molybdenum foil sections disposed in the press seals at either end of the envelope, the means to support the filaments being electrically connected ot said molybdenum foil sections.
4. The incandescent lamp according to claim 3 wherein there are two molybdenum foil sections in each pres-s seal,
4 each of them being attached to one of the means to support the filaments.
5. The incandescent lamp according to claim 4 wherein there are a series of spacers disposed about each of the filaments, separating them from each other and from the envelope.
References Cited UNITED STATES PATENTS 2,267,118 12/1941 Marden 313-315 X 2,229,962 *1/ 1941 Dercamer 313-316 X 2,980,820 4/1961 Brundige et al 313-275 X 3,012,167 12/1961 Poole 313-279 X 3,219,872 11/1965 Hodge 313-316 3,265,923 8/ 1966 Preziosi et al 313-316 JOHN W. HUCKERT, Primary Examiner.
A. J. JAMES, Assistant Examiner.
. U.S. Cl. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42268364A | 1964-12-31 | 1964-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3443144A true US3443144A (en) | 1969-05-06 |
Family
ID=23675916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US422683A Expired - Lifetime US3443144A (en) | 1964-12-31 | 1964-12-31 | Infrared incandescent lamp |
Country Status (2)
Country | Link |
---|---|
US (1) | US3443144A (en) |
GB (1) | GB1059810A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3579021A (en) * | 1969-04-30 | 1971-05-18 | Sylvania Electric Prod | Incandescent lamp having linear output |
US3617797A (en) * | 1968-05-16 | 1971-11-02 | Philips Corp | Pinch-base electric lamp with transversely arranged supply wires |
EP0089176A2 (en) * | 1982-03-25 | 1983-09-21 | GTE Products Corporation | Tubular incandescent lamp |
US4639579A (en) * | 1984-05-15 | 1987-01-27 | Thorn Emi Domestic Appliances Limited | Heating apparatus |
EP0222553A2 (en) * | 1985-11-09 | 1987-05-20 | THORN EMI plc | Tungsten-Halogen lamp |
US4710676A (en) * | 1985-08-15 | 1987-12-01 | Gte Products Corporation | Multi-level fuser lamp |
US4885454A (en) * | 1988-04-29 | 1989-12-05 | Centorr Associates, Inc. | High temperature furnace for oxidizing atmospheres |
EP0372166A2 (en) * | 1988-12-09 | 1990-06-13 | Heraeus Quarzglas GmbH | Infrared radiator |
US6614008B2 (en) | 2001-12-14 | 2003-09-02 | Xerox Corporation | Universal voltage fuser heater lamp |
EP1511360A2 (en) * | 2003-08-27 | 2005-03-02 | Heraeus Noblelight GmbH | Infrared radiator, its use and a manufacturing method |
US20060197454A1 (en) * | 2005-03-02 | 2006-09-07 | Ushiodenki Kabushiki Kaisha | Heater and heating device with heaters |
US20080050104A1 (en) * | 2006-08-24 | 2008-02-28 | Ushiodenki Kabushiki Kaisha | Filament lamp and light-irradiation-type heat treatment device |
US20080056693A1 (en) * | 2006-08-29 | 2008-03-06 | Star Progetti Tecnologie Applicate Spa | Infrared heat irradiating device |
US20140355971A1 (en) * | 2013-05-30 | 2014-12-04 | Osram Sylvania Inc. | Infrared Heat Lamp Assembly |
EP1793412B1 (en) * | 2005-11-30 | 2018-10-03 | Ushio Denki Kabushiki Kaisha | Filament lamp |
US20200402678A1 (en) * | 2019-06-19 | 2020-12-24 | Oregon State University | Resistance heater rod and method of making |
EP4170301A1 (en) * | 2021-10-22 | 2023-04-26 | Infineon Technologies AG | Infrared radiation source |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2229962A (en) * | 1940-06-08 | 1941-01-28 | Gen Electric | Lamp base and socket |
US2267118A (en) * | 1940-03-01 | 1941-12-23 | Westinghouse Electric & Mfg Co | Fluorescent tube |
US2980820A (en) * | 1959-12-24 | 1961-04-18 | Westinghouse Electric Corp | Filament support for an electric lamp or similar device |
US3012167A (en) * | 1959-07-14 | 1961-12-05 | Gen Electric Co Ltd | Envelopes for electrical devices |
US3219872A (en) * | 1962-09-19 | 1965-11-23 | Gen Electric | Radiant energy device |
US3265923A (en) * | 1963-03-19 | 1966-08-09 | Westinghouse Electric Corp | Baseless double-ended electric incandescent lamp |
-
1964
- 1964-12-31 US US422683A patent/US3443144A/en not_active Expired - Lifetime
-
1965
- 1965-12-31 GB GB55499/65A patent/GB1059810A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2267118A (en) * | 1940-03-01 | 1941-12-23 | Westinghouse Electric & Mfg Co | Fluorescent tube |
US2229962A (en) * | 1940-06-08 | 1941-01-28 | Gen Electric | Lamp base and socket |
US3012167A (en) * | 1959-07-14 | 1961-12-05 | Gen Electric Co Ltd | Envelopes for electrical devices |
US2980820A (en) * | 1959-12-24 | 1961-04-18 | Westinghouse Electric Corp | Filament support for an electric lamp or similar device |
US3219872A (en) * | 1962-09-19 | 1965-11-23 | Gen Electric | Radiant energy device |
US3265923A (en) * | 1963-03-19 | 1966-08-09 | Westinghouse Electric Corp | Baseless double-ended electric incandescent lamp |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617797A (en) * | 1968-05-16 | 1971-11-02 | Philips Corp | Pinch-base electric lamp with transversely arranged supply wires |
US3579021A (en) * | 1969-04-30 | 1971-05-18 | Sylvania Electric Prod | Incandescent lamp having linear output |
EP0089176A2 (en) * | 1982-03-25 | 1983-09-21 | GTE Products Corporation | Tubular incandescent lamp |
US4442374A (en) * | 1982-03-25 | 1984-04-10 | Gte Products Corporation | Dual length copier lamp |
EP0089176A3 (en) * | 1982-03-25 | 1984-05-30 | Gte Products Corporation | Tubular incandescent lamp |
EP0302535A1 (en) * | 1984-05-15 | 1989-02-08 | THORN EMI Patents Limited | Heating apparatus |
US4707589A (en) * | 1984-05-15 | 1987-11-17 | Thorn Emi Patents Limited | Heating apparatus |
US4639579A (en) * | 1984-05-15 | 1987-01-27 | Thorn Emi Domestic Appliances Limited | Heating apparatus |
US4710676A (en) * | 1985-08-15 | 1987-12-01 | Gte Products Corporation | Multi-level fuser lamp |
EP0222553A2 (en) * | 1985-11-09 | 1987-05-20 | THORN EMI plc | Tungsten-Halogen lamp |
EP0222553A3 (en) * | 1985-11-09 | 1989-06-07 | THORN EMI plc | Tungsten-Halogen lamp |
US4885454A (en) * | 1988-04-29 | 1989-12-05 | Centorr Associates, Inc. | High temperature furnace for oxidizing atmospheres |
EP0372166A2 (en) * | 1988-12-09 | 1990-06-13 | Heraeus Quarzglas GmbH | Infrared radiator |
EP0372166A3 (en) * | 1988-12-09 | 1992-02-05 | Heraeus Quarzglas GmbH | Infrared radiator |
US6614008B2 (en) | 2001-12-14 | 2003-09-02 | Xerox Corporation | Universal voltage fuser heater lamp |
EP1511360A3 (en) * | 2003-08-27 | 2007-08-29 | Heraeus Noblelight GmbH | Infrared radiator, its use and a manufacturing method |
EP1511360A2 (en) * | 2003-08-27 | 2005-03-02 | Heraeus Noblelight GmbH | Infrared radiator, its use and a manufacturing method |
US7656079B2 (en) * | 2005-03-02 | 2010-02-02 | Ushiodenki Kabushiki Kaisha | Heater and heating device with heaters with lamps having an independently powered multiple part filament |
US20060197454A1 (en) * | 2005-03-02 | 2006-09-07 | Ushiodenki Kabushiki Kaisha | Heater and heating device with heaters |
EP1793412B1 (en) * | 2005-11-30 | 2018-10-03 | Ushio Denki Kabushiki Kaisha | Filament lamp |
US7639930B2 (en) * | 2006-08-24 | 2009-12-29 | Ushiodenki Kabushiki Kaisha | Filament lamp and light-irradiation-type heat treatment device |
US20080050104A1 (en) * | 2006-08-24 | 2008-02-28 | Ushiodenki Kabushiki Kaisha | Filament lamp and light-irradiation-type heat treatment device |
US20080056693A1 (en) * | 2006-08-29 | 2008-03-06 | Star Progetti Tecnologie Applicate Spa | Infrared heat irradiating device |
US7764871B2 (en) * | 2006-08-29 | 2010-07-27 | Star Progetti Tecnologie Applicate | Infrared heat irradiating device |
US20140355971A1 (en) * | 2013-05-30 | 2014-12-04 | Osram Sylvania Inc. | Infrared Heat Lamp Assembly |
US10264629B2 (en) * | 2013-05-30 | 2019-04-16 | Osram Sylvania Inc. | Infrared heat lamp assembly |
US20200402678A1 (en) * | 2019-06-19 | 2020-12-24 | Oregon State University | Resistance heater rod and method of making |
US11963268B2 (en) * | 2019-06-19 | 2024-04-16 | Oregon State University | Resistance heater rod and method of making such |
EP4170301A1 (en) * | 2021-10-22 | 2023-04-26 | Infineon Technologies AG | Infrared radiation source |
Also Published As
Publication number | Publication date |
---|---|
GB1059810A (en) | 1967-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3443144A (en) | Infrared incandescent lamp | |
EP0168015B1 (en) | Low wattage double filament tungsten-halogen lamp | |
US2910605A (en) | Radiant energy device | |
US3416024A (en) | Differential output incandescent lamp | |
US3497753A (en) | Incandescent lamp | |
US3579021A (en) | Incandescent lamp having linear output | |
US2765420A (en) | Lamp electrode | |
US3219872A (en) | Radiant energy device | |
US3160777A (en) | Filament and reflector support for an elongated tube | |
US2930920A (en) | Electrical discharge lamp | |
US6639364B1 (en) | Halogen incandescent capsule having filament leg clamped in press seal | |
US4052637A (en) | Halogen incandescent lamp | |
US2366292A (en) | Filament joint structure for electric lamps | |
GB960149A (en) | An electric incandescent lamp | |
US3084271A (en) | Multiple arc fluorescent lamp | |
US3898503A (en) | Dual cathode structure | |
US2171580A (en) | Electric lamp | |
US2791714A (en) | Light projection device | |
US4626735A (en) | Incandescent lamp having two lead-in conductors sealed within one end and including expansion means | |
US2524455A (en) | Mount assembly for sun lamps | |
US20020070666A1 (en) | Fluorescent lamp and method of manufacturing same | |
US2106689A (en) | Incandescent electric lamp | |
US1917991A (en) | Vacuum tube filament structure | |
US2039772A (en) | Electric radiation device | |
US2039773A (en) | Incandescent electric lamp |