US3629551A - Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current - Google Patents
Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current Download PDFInfo
- Publication number
- US3629551A US3629551A US868521A US3629551DA US3629551A US 3629551 A US3629551 A US 3629551A US 868521 A US868521 A US 868521A US 3629551D A US3629551D A US 3629551DA US 3629551 A US3629551 A US 3629551A
- Authority
- US
- United States
- Prior art keywords
- ferromagnetic pipe
- pipe
- heat
- ferromagnetic
- conductor line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002500 effect on skin Effects 0.000 title abstract description 14
- 230000020169 heat generation Effects 0.000 title description 13
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 129
- 239000004020 conductor Substances 0.000 claims abstract description 70
- 230000035699 permeability Effects 0.000 claims abstract description 11
- 230000006872 improvement Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L53/00—Heating of pipes or pipe systems; Cooling of pipes or pipe systems
- F16L53/30—Heating of pipes or pipe systems
- F16L53/34—Heating of pipes or pipe systems using electric, magnetic or electromagnetic fields, e.g. induction, dielectric or microwave heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D13/00—Electric heating systems
- F24D13/02—Electric heating systems solely using resistance heating, e.g. underfloor heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D13/00—Electric heating systems
- F24D13/02—Electric heating systems solely using resistance heating, e.g. underfloor heating
- F24D13/022—Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
- F24D13/024—Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements in walls, floors, ceilings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- FIG. 1 A first figure.
- This invention relates to a method for controlling heat generation locally in a heat-generating pipe. More particularly this invention relates to a method for controlling heat generation locally according to the demand of a to-be-heated body, in a heat-generating pipe which utilizes skin-effect current and comprises as a heat-generating body, of a ferromagnetic pipe to which electricity is supplied from one source.
- the heat-generating pipes utilizing skin-effect current in which the method of the present invention is applied are those disclosed in U.S. Pat. No. 3,293,407 or U.S. Pat. No. 3,515,837.
- FIG. 1 and FIG. 2 show the constructions and wirings of two heat-generating pipes based upon different principles
- FIG. 3 is one embodiment of the present invention hereinafter fully explained.
- FIG. I shows the construction and wiring of the heatgenerating pipe disclosed in the above-mentioned U.S. Pat. No. 3,293,407.
- l is a ferromagnetic pipe
- 2 is an insulated conductor line which enters the ferromagnetic pipe from one end 3 and is connected to the other end 4 after passed therethrough
- 5 is a conductor line connected to the above-mentioned one end 3 of the ferromagnetic pipe.
- the other ends of the above-mentioned conductor lines 2 and 5 are connected to two terminals of an AC source 6.
- FIG. 2 shows a construction of another heat-generating pipe disclosed in U.S. Pat. No. 3,515,837.
- l and l' are two ferromagnetic pipes.
- An insulated conductor line 2 is passed through the pipes 1 and l successively as shown in FIG. 2 and both ends of it are connected to different terminals of an AC source 6.
- the left ends 3 and 3' of the ferromagnetic pipes l and l and the right ends 4 and 4 of the same pipes l and l are connected, respectively, with conductor lines 7 and 7' (e.g., electric wire).
- conductor lines 7 and 7' e.g., electric wire
- V P/l -f wherein p is the resistivity of ferromagnetic material constructing the pipe ((1 cm.), 1. is the permeability of the same material and f is the frequency of AC (Hz.
- a depth s of a surface skin in the equation I is to be illustrated by a concrete example, it is only 0.] cm. in the case where a commercial steel pipe is used as a ferromagnetic pipe and the frequency of a current supplied to a heat-generating pipe is 50 or 60 Hz. Accordingly, a steel pipe having a thickness of more than 0.2 cm. can be used as the ferromagnetic pipe of a heat-generating pipe of this kind and there is no need of special precaution to the material of heat-generating pipes and current to be supplied.
- heat-generating pipes having constructions shown in FIGS. 1 and 2 are those applied to single-phase circuits, the application of these heat-generating pipes to threephase circuits will be easy for a person having an ordinary skill in the art.
- the heat generated in the insulated conductor line is con ducted mainly by a medium between the conductor line and the ferromagnetic pipe.
- a medium is usually air but a better heat conductor such as water, oils and other liquid madium may be used.
- the use of such a liquid medium renders the allowable current of the conductor line about three times as large as that of gaseous medium, e.g., air. Thence the use of liquid medium is economical particularly in case of high-capacity heat-generating pipe.
- Such an object can be attained by the method of the present invention which is characterized by changing one or more factors of those consisting of the cross-sectional area of the conductor line, the resistivity of the same, the resistivity of ferromagnetic pipe, the permeability of the same and inside diameter of the same to locally control heat quantity generated in a heat-generating pipe utilizing skin-effect current and consisting of a ferromagnetic pipe and an insulated conductor line installed therethrough wherein an AC flows through concentratedly only in the inner skin region thereof, and the strength and frequency of electric current flowing through the insulated conductor line and the heat-generating pipe are constant.
- current i and frequency f of AC are constant in each part of the heat-generating pipe and cannot be changed, but l resistivity p and (2) permeability p.
- a ferromagnetic pipe can be changed by changing the material of the ferromagnetic pipe, (3) diameter of a ferromagnetic pipe can be selected arbitrarily even when the pipe is of the same material and (4) resistivity (R of an insulated conductor line can be varied by arbitrarily selecting a material and/or diameter of the conductor line.
- resistivity R of an insulated conductor line can be varied by arbitrarily selecting a material and/or diameter of the conductor line.
- FIG. 3 is a fluid-transporting pipe one portion of which is installed above the ground and another portion of which is installed underground. 10 shows soil and sand.
- the portion installed in .the underground requires a lesser amount of heat compared with the portion exposed to the air in order to maintain the temperature.
- it is possible to minimize the change of the fluid temperature in a transportation pipe even with a constant supply of heat per unit length by using, as a relatively good lagging layer ll for the underground portion, and an insulating material of either reduced efficiency or reduced thickness for the portion above the ground.
- l and l are ferromagnetic pipes installed in a transportation pipe 9. At a junction point 12, they are connected by welding.
- 2 and 2' are conductor lines passing through the ferromagnetic pipes l, l.
- the one end of the conductor line 2 is connected to one terminal of AC source 6 as indicated by a broken line, and the other end of which is connected to a conductor line 2' through the junction point 13, and the conductor line 2' is connected to one end of ferromagnetic pipe 4 after passing through the ferromagnetic pipe 1'.
- one end 3 of the ferromagnetic pipe 1 is connected to the other terminal of AC source 6 by a conductor line 5 as indicated by a broken line and thus a heatgenerating pipe is constructed.
- connection box 14 is a connection. box attached to the heat-generating pipe. lf kinds of insulated conductor lines are changed in one heat-generating pipe as in this example or if a heat-generating pipe is long or has many bends, the connection box is convenient for the construction and management of the heat-generating pipe.
- a material having a greater resistivity and/or permeability than that for the pipe 1' lying in the underground may be used for a ferromagnetic pipe I of a heatgenerating pipe lying above the ground, or if the same material is used, the diameter of the pipe 1' may be reduced, or the material or cross-sectional area of each insulated conductor line is selected in such a way that the resistance of the line 2 is greater than that of the line 2'.
- the foregoing description is almost exclusively directed to the case of application in pipe lines but the method of the present invention can be also applied widely and effectively to the heating for temperature maintenance, prevention of freezing or melting of snow for walls of constructions, floors, rooves, road surfaces runways for aircraft, surface grounds of rail ways or tracks, bridges and power transmission lines, and to the heating or temperature maintenance of tanks wherein temperature reduction is undesirable.
- said ferromagnetic pipe being composed of at least two segments of differing heat-generating capacity
- At least one of the segments of said ferromagnetic pipe being constructed so that it has at least one of the aforesaid heat-generating factors which is different from the corresponding heat-generating factor of another segment of the ferromagnetic pipe.
- heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, improvement which comprises said ferromagnetic pipe having at least one segment wherein the permeability of the ferromagnetic pipe differs from that of at least one other segment of the ferromagnetic pipe.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
Abstract
In a heat-generating pipe comprising a ferromagnetic pipe and an insulated conductor line installed therethrough wherein an AC flows through concentratedly in the inner skin region thereof due to the skin effect of AC heat quantity generated in the heat generating pipe is locally controlled by changing one or more factors of those consisting of cross-sectional area of the conductor line, resistivity of the same, inside diameter of the ferromagnetic pipe, resistivity of the same and permeability of the same.
Description
United States Patent 1111 3,62
72] Inventor Masao Ando [56) References Cited YoItohIm Jilnn UNITED STATES PATENTS 1211 p 3 1 3 969 1,722,797 7/1929 Jessup 219/300 ux 1 1 1 2,561,249 7/1951 T0mlinson.. 219/300 ux [45] Patented Dec. 21,1971
, 3,293,407 12/1966 Ando 219/301 [73] Asslgnee Chino Corporation 0, FOREIGN PATENTS [32] p i i 0, 29, 1968 1,039,832 8/1966 Great Britain 219/300 1 Primary Examiner-R. F. Staubly 1 43/78735 Attorney-Fred c. Philpitt ALLY [54] CONTROLLING HEAT GENERATlON LOC ABSTRACT: In a heat-generating pipe comprising a fer- IN A HEAT-GENERATING PIPE UTILIZING SK d l d d CURRENT romagnetlc pipe an an insu ate con uctor hne mstalled EFFECT D therethrough wherem an AC flows through concentratediy 1n 6 Chums 3 the inner skin region thereof due to the skin effect of AC heat [52] US. Cl 219/300, quantity generated in the heat generating pipe is low), com 219/307, 338/217 trolled by changing one or more factors of those consisting of [51] InLCI "051) 3/00 cross sectional area of the Conductor line resistivity of the [50] Field of Search 219/300, same inside diameter of the ferromagnetic pipe resistivity of 1"7 I 1 O 1 1 I 1 5 i p the same and permeability of the same.
FIG.
CONTROLLING IIEAT GENERATION LOCALLY IN A HEAT-GENERATING PIPE UTILIZING SKIN-EFFECT CURRENT DESCRIPTION This invention relates to a method for controlling heat generation locally in a heat-generating pipe. More particularly this invention relates to a method for controlling heat generation locally according to the demand of a to-be-heated body, in a heat-generating pipe which utilizes skin-effect current and comprises as a heat-generating body, of a ferromagnetic pipe to which electricity is supplied from one source.
The heat-generating pipes utilizing skin-effect current in which the method of the present invention is applied are those disclosed in U.S. Pat. No. 3,293,407 or U.S. Pat. No. 3,515,837.
The principle of heat-generating pipe utilizing skin-effect current will be more fully described with reference to the attached drawing:
FIG. 1 and FIG. 2 show the constructions and wirings of two heat-generating pipes based upon different principles; and
FIG. 3 is one embodiment of the present invention hereinafter fully explained.
FIG. I shows the construction and wiring of the heatgenerating pipe disclosed in the above-mentioned U.S. Pat. No. 3,293,407. In this figure, l is a ferromagnetic pipe, 2 is an insulated conductor line which enters the ferromagnetic pipe from one end 3 and is connected to the other end 4 after passed therethrough, 5 is a conductor line connected to the above-mentioned one end 3 of the ferromagnetic pipe. The other ends of the above-mentioned conductor lines 2 and 5 are connected to two terminals of an AC source 6. When an AC of a suitable frequency is passed through the circuit thus formed, the AC flowing through the pipe 1 is concentrated in a limited inside surface region (skin region) of the pipe 1 due to skin effect, generating a joules heat corresponding to the electric resistance of the above-mentioned skin region and substantially no electric potential appears on the outside surface of the pipes 1.
FIG. 2 shows a construction of another heat-generating pipe disclosed in U.S. Pat. No. 3,515,837. In this Figure, l and l' are two ferromagnetic pipes. An insulated conductor line 2 is passed through the pipes 1 and l successively as shown in FIG. 2 and both ends of it are connected to different terminals of an AC source 6. The left ends 3 and 3' of the ferromagnetic pipes l and l and the right ends 4 and 4 of the same pipes l and l are connected, respectively, with conductor lines 7 and 7' (e.g., electric wire). When an AC of a suitable frequency is passed through the conductor 2, an AC is induced in the ferromagnetic pipes l and l, and flows through the circuit formed by the ferromagnetic pipes l and 1' and the conductor lines 7 and 7 When the impedances of the conductor lines 7 and 7' are arranged to be substantially zero (which can be realized by shortening the conductor lines 7 and 7 by placing the ends of the pipes 3, 3 and 4, 4' respectively as close as possible, and using the conductor lines 7 and 7 of which the electric resistance is as low as possible), the current flowing through these pipes is concentrated in a limited inside surface region (skin region) of the pipes l and 1' due to skin effect, generating a joules heat corresponding to the electric resistance of the said skin region, and substantially no electric potential appears on the outside surface of the ferromagnetic pipes l and l.
In the above-mentioned two types of heat-generating pipe, the depth or thickness S of the inside surface region of the ferromagnetic pipe in which the AC flows, is expressed by following equation:
V P/l -f wherein p is the resistivity of ferromagnetic material constructing the pipe ((1 cm.), 1. is the permeability of the same material and f is the frequency of AC (Hz.
If there are relations expressed by formulas l d among the thickness t (cm.) of the ferromagnetic pipe used, the inside diameter d (cm.) of the pipe, the length I (cm.) of the pipe and the depth or thickness s mentioned above, substantially no electric potential appears on the outside surface of the ferromagnetic pipes. Even if two arbitrary points of the surface of these ferromagnetic pipes are connected by a conductor line 8 as in FIGS. l and 2, no current flows in this conductor. Further a substance can be directly contacted with the surface of such ferromagnetic pipes, without any leakage of current from the ferromagnetic pipes. Accordingly, when the heat-generating pipe of this kind is used to heat a substance, it is possible to contact the substance.
If a depth s of a surface skin in the equation I is to be illustrated by a concrete example, it is only 0.] cm. in the case where a commercial steel pipe is used as a ferromagnetic pipe and the frequency of a current supplied to a heat-generating pipe is 50 or 60 Hz. Accordingly, a steel pipe having a thickness of more than 0.2 cm. can be used as the ferromagnetic pipe of a heat-generating pipe of this kind and there is no need of special precaution to the material of heat-generating pipes and current to be supplied.
Although the heat-generating pipes having constructions shown in FIGS. 1 and 2 are those applied to single-phase circuits, the application of these heat-generating pipes to threephase circuits will be easy for a person having an ordinary skill in the art.
The amount of heat generated (W watt) per cm. of the above-mentioned heat-generating pipe can be calculated as follows: A. The amount of heat generated in the ferromagnetic pipe (W watt); The resistance R, (ohm/cm.) of a ferromagnetic pipe will be approximately expressed from the equation I by the equation of If the amount of current flowing is i ampere, the amount of heat will be expressed by the equation of W,=i R1%i ;J/5,03O1rd (4) B. The amount of heat generated iri the Filafed conductor line W watt); if the resistance per cm. of a conductor line is R (ohm/cm), the amount of heat will be expressed by W FR, (5) The heat generated in the insulated conductor line is con ducted mainly by a medium between the conductor line and the ferromagnetic pipe. Such a medium is usually air but a better heat conductor such as water, oils and other liquid madium may be used. The use of such a liquid medium renders the allowable current of the conductor line about three times as large as that of gaseous medium, e.g., air. Thence the use of liquid medium is economical particularly in case of high-capacity heat-generating pipe.
Thus the amount of heat generated per cm. of this kind of heat-generating pipe (W watt) is the sum of the amounts of heat generation expressed by the above-mentioned equations 4 and 5.
r z (6) and approximately Imp f-5,03o1rd The above-mentioned heat-generating pipe utilizing skin effect current can be made to extend as long as several kilometers by supplying electricity from only one point if the electric potential of an electricity source which supplies electricity to it is elevated. This is one of the notable advantages of the heatgenerating pipe of this kind. When one heat-generating pipe of such a long length is installed with bends in order to use it in the heating of surfaces of constructions such as floors of buildings, wall surfaces or road surfaces, it is possible to some extent to change locally the amount of heat to be supplied to a to-be-heated surface by adjusting the density of heat-generating pipes installed per unit area of to-be-heated surface. On the contrary, it is impossible to adjust locally the amount of heat to be supplied, as it is, in the temperature maintenance and heating of such a linear construction as a pipeline.
In general, when a long pipeline is installed, the environment around the installed pipelines is not uniform. There will be changes in whether sunshine is large or small, whether the pipeline is above or under the ground or whether it is in water or not and heat loss from the pipeline varies depending upon each environment. Further there may be a case where a part of the transporting material is separated into a different streamline or a different streamline is introduced in the course of a pipeline, causing a local change of the amount of flow and hence a local change in the amount of heat to be supplied. When a pipeline is designed based upon the maximum amount of heat to be supplied, the amount of heat generation in a part where lesser amount of heat is required becomes excessive, which is not desirable because the transported fluid is overheated. It is possible to avoid such excessive heat generation by dividing a heat-generating pipe into various sections and supplying respectively, electric potentials suitable to each section. However, such a method is not preferable because it makes the unified control of a heat-generating pipe impossible and diminishes the above-mentioned notable advantage of the heat-generating pipe of this kind.
Accordingly, it is an object of the present invention to provide a method for solving the problem relating to the drawback of the heat-generating pipe of this kind.
Such an object can be attained by the method of the present invention which is characterized by changing one or more factors of those consisting of the cross-sectional area of the conductor line, the resistivity of the same, the resistivity of ferromagnetic pipe, the permeability of the same and inside diameter of the same to locally control heat quantity generated in a heat-generating pipe utilizing skin-effect current and consisting of a ferromagnetic pipe and an insulated conductor line installed therethrough wherein an AC flows through concentratedly only in the inner skin region thereof, and the strength and frequency of electric current flowing through the insulated conductor line and the heat-generating pipe are constant.
As expressed approximately in the above-mentioned equation 6, the amount of heat generation per unit length of this kind of heat-generating pipe is the sum of the heat generated in the inside skin region of the ferromagnetic pipe,W,: 'i M 50301rd and that generated in the insulated conductor line, W,=i R,. Among the factors having influence on the abovementioned heat generation, current i and frequency f of AC are constant in each part of the heat-generating pipe and cannot be changed, but l resistivity p and (2) permeability p. of a ferromagnetic pipe can be changed by changing the material of the ferromagnetic pipe, (3) diameter of a ferromagnetic pipe can be selected arbitrarily even when the pipe is of the same material and (4) resistivity (R of an insulated conductor line can be varied by arbitrarily selecting a material and/or diameter of the conductor line. In general it is convenient to construct a heat-generating pipe utilizing skin-effect current and having a wide range of variation of heat-generating amount per unit length using a steel pipe and a copper wire most easily available in the market and changing the inside diameter of the steel pipe and/or the cross-sectional area of the insulated conductor line.
One embodiment of the present invention can be explained by referring to FIG. 3. In this drawing, 9 is a fluid-transporting pipe one portion of which is installed above the ground and another portion of which is installed underground. 10 shows soil and sand. The portion installed in .the underground requires a lesser amount of heat compared with the portion exposed to the air in order to maintain the temperature. In some cases, it is possible to minimize the change of the fluid temperature in a transportation pipe even with a constant supply of heat per unit length by using, as a relatively good lagging layer ll for the underground portion, and an insulating material of either reduced efficiency or reduced thickness for the portion above the ground. However, it is desirable in general to minimize the regulation of the fluid temperature by minimizing the heat loss as low as possible. Particularly, in a long distance pipeline, the latter is economical and reasonable.
In FIG. 3, l and l are ferromagnetic pipes installed in a transportation pipe 9. At a junction point 12, they are connected by welding. 2 and 2' are conductor lines passing through the ferromagnetic pipes l, l. The one end of the conductor line 2 is connected to one terminal of AC source 6 as indicated by a broken line, and the other end of which is connected to a conductor line 2' through the junction point 13, and the conductor line 2' is connected to one end of ferromagnetic pipe 4 after passing through the ferromagnetic pipe 1'. On the other hand, one end 3 of the ferromagnetic pipe 1 is connected to the other terminal of AC source 6 by a conductor line 5 as indicated by a broken line and thus a heatgenerating pipe is constructed. 14 is a connection. box attached to the heat-generating pipe. lf kinds of insulated conductor lines are changed in one heat-generating pipe as in this example or if a heat-generating pipe is long or has many bends, the connection box is convenient for the construction and management of the heat-generating pipe.
ln applying the method of the present invention to the case illustrated in FIG. 3, a material having a greater resistivity and/or permeability than that for the pipe 1' lying in the underground may be used for a ferromagnetic pipe I of a heatgenerating pipe lying above the ground, or if the same material is used, the diameter of the pipe 1' may be reduced, or the material or cross-sectional area of each insulated conductor line is selected in such a way that the resistance of the line 2 is greater than that of the line 2'.
Since the heat quantity W,, Le, iR generated in the insulated conductor line is exceedingly small compared with the heat quantity W, generated in the ferromagnetic pipe, among the total heat quantity W of this kind of heat-generating pipe which can be expressed by a formula 6 or 7, it is not so effective to make changes in the insulated conductor line in order to change the heat generation of the heat-generating pipe.
Commercial steel pipes are useful for the ferromagnetic pipes of the heat-generating pipe of this kind, because it is inexpensive and available from market in various sizes. Accordingly, it is most convenient and effective to use steel pipes in the practice of the present invention and change locally their inside diameter according to the demand of local control of heat generation. For example, in FIG. 3, such an arrangement will be sufficient that a steel pipe 1 having a relatively small inside diameter is used in order to increase heat generation based upon the equation 4 in the heating of the portion lying above the ground where the heat loss is relatively large and a steel pipe 1 having a greater inside diameter than that of l is used as a heating pipe for the portion lying underground. The selection of the diameter of ferromagnetic pipe can be made easily by the calculation based upon a required temperature and heat loss using an equation 3.
The foregoing description is oflered to illustrate a preferable embodiment of the present invention and not to limit the material of ferromagnetic pipe constituting a heat-generating pipe only to a steel pipe in the method of the present invention.
Further, the foregoing description is almost exclusively directed to the case of application in pipe lines but the method of the present invention can be also applied widely and effectively to the heating for temperature maintenance, prevention of freezing or melting of snow for walls of constructions, floors, rooves, road surfaces runways for aircraft, surface grounds of rail ways or tracks, bridges and power transmission lines, and to the heating or temperature maintenance of tanks wherein temperature reduction is undesirable.
What is claimed is:
l. in the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises:
a. said ferromagnetic pipe being composed of at least two segments of differing heat-generating capacity,
b. the heat-generating ability of each of said segments of pipe being governed by primary heat-generating factors which include 1. the cross-sectional area of the conductor line,
2. the resistivity of the conductor line,
3. the resistivity of the ferromagnetic pipe,
4. the permeability of the ferromagnetic pipe, and 5. the inside diameter of the ferromagnetic pipe,
c. at least one of the segments of said ferromagnetic pipe being constructed so that it has at least one of the aforesaid heat-generating factors which is different from the corresponding heat-generating factor of another segment of the ferromagnetic pipe.
2. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the cross-sectional area of the conductor line passing therethrough differs from that of at least one other segment of the ferromagnetic pipe.
3. In the known type of heat-generating apparatus comprising a length offerromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the resistivity of the conductor line passing therethrough differs from that of at least one other segment of the ferromagnetic pipe.
4. In the known type of heat-generating apparatus comprising a length of ferromagnetic pip'e, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the resistivity of the ferromagnetic pipe difiers from that of at least one other segment of ferromagnetic pipe.
5. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, improvement which comprises said ferromagnetic pipe having at least one segment wherein the permeability of the ferromagnetic pipe differs from that of at least one other segment of the ferromagnetic pipe.
6. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the i nner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the inside diameter of the ferromagnetic pipe differs from that of at least one other segment of the ferromagnetic pipe.
Disclaimer 3,629,551.Mas0a Ando, Yokohamashi, Japan. CONTROLLING HEAT GENERATION LOCALLY IN A HEAT-GENERATING PIPE UTILIZING SKIN-EFFECT CURRENT. Patent dated Dec. 21, 1971. Disclaimer filed June 22, 1971, by the assignee, Chz'sso Gowpomtz'on.
Hereby disclaims the portion of the term of the patent subsequent to Dec. 20, 1983.
[Oyficial Gazette September 12, 1972] Disclaimer 3,629,55L-Masoa Ando, Yokohamashi, Japan. CONTROLLING HEAT GENERATION LOCALLY IN A HEAT-GENERATING PIPE UTILIZING SKIN-EFFECT CURRENT. Patent dated Dec. 21, 1971. Disclaimer filed June 22, 1971, by the assignee, O/zz'sso Corporation.
Hereby disclaims the portion of the term of the patent subsequent to Dec. 20, 1983.
[Oyfioz'al Gazette September 12,1972]
Claims (10)
1. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises: a. said ferromagnetic pipe being composed of at least two segments of differing heat-generating capacity, b. the heat-generating ability of each of said segments of pipe being governed by primary heat-generating factors which include 1. the cross-sectional area of the conductor line, 2. the resistivity of the conductor line, 3. the resistivity of the ferromagnetic pipe, 4. the permeability of the ferromagnetic pipe, and 5. the inside diameter of the ferromagnetic pipe, c. at least one of the segments of said ferromagnetic pipe being constructed so that it has at least one of the aforesaid heatgenerating factors which is different from the corresponding heat-generating factor of another segment of the ferromagnetic pipe.
2. the resistivity of the conductor line,
2. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the cross-sectional area of the conductor line passing therethrough differs from that of at least one other segmenT of the ferromagnetic pipe.
3. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the resistivity of the conductor line passing therethrough differs from that of at least one other segment of the ferromagnetic pipe.
3. the resistivity of the ferromagnetic pipe,
4. the permeability of the ferromagnetic pipe, and
4. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the resistivity of the ferromagnetic pipe differs from that of at least one other segment of ferromagnetic pipe.
5. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, improvement which comprises said ferromagnetic pipe having at least one segment wherein the permeability of the ferromagnetic pipe differs from that of at least one other segment of the ferromagnetic pipe.
5. the inside diameter of the ferromagnetic pipe, c. at least one of the segments of said ferromagnetic pipe being constructed so that it has at least one of the aforesaid heat-generating factors which is different from the corresponding heat-generating factor of another segment of the ferromagnetic pipe.
6. In the known type of heat-generating apparatus comprising a length of ferromagnetic pipe, a first length of an electrical conductor line disposed within said ferromagnetic pipe but insulated therefrom, and electrical and power connections such that upon the passage of alternating voltage through said first length of electrical conductor line there is a concentrated flow of current along the inner skin of the ferromagnetic pipe to thereby generate heat in said ferromagnetic pipe, the improvement which comprises said ferromagnetic pipe having at least one segment wherein the inside diameter of the ferromagnetic pipe differs from that of at least one other segment of the ferromagnetic pipe.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7873568 | 1968-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3629551A true US3629551A (en) | 1971-12-21 |
Family
ID=13670125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US868521A Expired - Lifetime US3629551A (en) | 1968-10-29 | 1969-10-22 | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
Country Status (4)
Country | Link |
---|---|
US (1) | US3629551A (en) |
DE (1) | DE1954458B2 (en) |
FR (1) | FR2021838A1 (en) |
GB (1) | GB1251095A (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983360A (en) * | 1974-11-27 | 1976-09-28 | Chevron Research Company | Means for sectionally increasing the heat output in a heat-generating pipe |
US4110599A (en) * | 1974-11-04 | 1978-08-29 | Chevron Research Company | Method and means for decreasing the heat output of a segment of a heat generating pipe |
US4132884A (en) * | 1976-02-05 | 1979-01-02 | Chevron Research Company | Method and means for segmentally reducing heat output in a heat-tracing pipe |
US4408117A (en) * | 1980-05-28 | 1983-10-04 | Yurkanin Robert M | Impedance heating system with skin effect particularly for railroad tank cars |
US4456186A (en) * | 1981-03-09 | 1984-06-26 | Chisso Engineering Co. Ltd. | Electrically heated reactor for high temperature and pressure chemical reactions |
WO1984004698A1 (en) * | 1983-05-26 | 1984-12-06 | Metcal Inc | Self-regulating porous heater device |
US5182792A (en) * | 1990-08-28 | 1993-01-26 | Petroleo Brasileiro S.A. - Petrobras | Process of electric pipeline heating utilizing heating elements inserted in pipelines |
WO2003040474A1 (en) * | 2001-10-18 | 2003-05-15 | Chun Joong H | High-traction anti-icing roadway cover system |
US20040140096A1 (en) * | 2002-10-24 | 2004-07-22 | Sandberg Chester Ledlie | Insulated conductor temperature limited heaters |
US20060137864A1 (en) * | 2002-09-23 | 2006-06-29 | Schmidt + Clemens Gmbh & Co. Kg | Pipe section for a pipe coil |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US20070209799A1 (en) * | 2001-10-24 | 2007-09-13 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20090214196A1 (en) * | 2008-02-15 | 2009-08-27 | Jarle Jansen Bremnes | High efficiency direct electric heating system |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20110124223A1 (en) * | 2009-10-09 | 2011-05-26 | David Jon Tilley | Press-fit coupling joint for joining insulated conductors |
US20110134958A1 (en) * | 2009-10-09 | 2011-06-09 | Dhruv Arora | Methods for assessing a temperature in a subsurface formation |
US20110132661A1 (en) * | 2009-10-09 | 2011-06-09 | Patrick Silas Harmason | Parallelogram coupling joint for coupling insulated conductors |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US8485256B2 (en) | 2010-04-09 | 2013-07-16 | Shell Oil Company | Variable thickness insulated conductors |
US8586867B2 (en) | 2010-10-08 | 2013-11-19 | Shell Oil Company | End termination for three-phase insulated conductors |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9048653B2 (en) | 2011-04-08 | 2015-06-02 | Shell Oil Company | Systems for joining insulated conductors |
US9080409B2 (en) | 2011-10-07 | 2015-07-14 | Shell Oil Company | Integral splice for insulated conductors |
US9080917B2 (en) | 2011-10-07 | 2015-07-14 | Shell Oil Company | System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor |
US9226341B2 (en) | 2011-10-07 | 2015-12-29 | Shell Oil Company | Forming insulated conductors using a final reduction step after heat treating |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
WO2017025098A1 (en) * | 2015-08-10 | 2017-02-16 | National Oilwell Varco Denmark I/S | An unbonded flexible pipe |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
EP4472354A1 (en) * | 2023-06-02 | 2024-12-04 | Aker Solutions AS | Heater assembly and reactor assembly |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2178254B (en) * | 1985-06-28 | 1989-07-19 | Edward James Williams | Electric heating apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1722797A (en) * | 1925-11-10 | 1929-07-30 | Western Electric Co | Method of and apparatus for applying and baking an insulating enamel coating |
US2561249A (en) * | 1949-02-07 | 1951-07-17 | Edward R Tomlinson | Heater for oil well tubing |
GB1039832A (en) * | 1962-06-27 | 1966-08-24 | Basf Ag | An electrically heated film evaporator |
US3293407A (en) * | 1962-11-17 | 1966-12-20 | Chisso Corp | Apparatus for maintaining liquid being transported in a pipe line at an elevated temperature |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB756945A (en) * | 1953-06-25 | 1956-09-12 | Albert Alexander Fisher | Improvements relating to electric heating of fluids |
CH386586A (en) * | 1959-11-03 | 1965-01-15 | Z Elektrotepelnych Zarizeni Ze | Device for inductive heating on a steel belt, especially for weirs and dams |
-
1969
- 1969-10-22 US US868521A patent/US3629551A/en not_active Expired - Lifetime
- 1969-10-29 DE DE19691954458 patent/DE1954458B2/en active Pending
- 1969-10-29 FR FR6937141A patent/FR2021838A1/fr not_active Withdrawn
- 1969-10-29 GB GB1251095D patent/GB1251095A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1722797A (en) * | 1925-11-10 | 1929-07-30 | Western Electric Co | Method of and apparatus for applying and baking an insulating enamel coating |
US2561249A (en) * | 1949-02-07 | 1951-07-17 | Edward R Tomlinson | Heater for oil well tubing |
GB1039832A (en) * | 1962-06-27 | 1966-08-24 | Basf Ag | An electrically heated film evaporator |
US3293407A (en) * | 1962-11-17 | 1966-12-20 | Chisso Corp | Apparatus for maintaining liquid being transported in a pipe line at an elevated temperature |
Cited By (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4110599A (en) * | 1974-11-04 | 1978-08-29 | Chevron Research Company | Method and means for decreasing the heat output of a segment of a heat generating pipe |
US3983360A (en) * | 1974-11-27 | 1976-09-28 | Chevron Research Company | Means for sectionally increasing the heat output in a heat-generating pipe |
US4132884A (en) * | 1976-02-05 | 1979-01-02 | Chevron Research Company | Method and means for segmentally reducing heat output in a heat-tracing pipe |
US4142093A (en) * | 1976-02-05 | 1979-02-27 | Chevron Research Company | Method and means for segmentally reducing heat output in a heat-tracing pipe |
US4408117A (en) * | 1980-05-28 | 1983-10-04 | Yurkanin Robert M | Impedance heating system with skin effect particularly for railroad tank cars |
US4456186A (en) * | 1981-03-09 | 1984-06-26 | Chisso Engineering Co. Ltd. | Electrically heated reactor for high temperature and pressure chemical reactions |
WO1984004698A1 (en) * | 1983-05-26 | 1984-12-06 | Metcal Inc | Self-regulating porous heater device |
US5182792A (en) * | 1990-08-28 | 1993-01-26 | Petroleo Brasileiro S.A. - Petrobras | Process of electric pipeline heating utilizing heating elements inserted in pipelines |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
WO2003040474A1 (en) * | 2001-10-18 | 2003-05-15 | Chun Joong H | High-traction anti-icing roadway cover system |
US6592288B2 (en) | 2001-10-18 | 2003-07-15 | Joong H. Chun | High-traction anti-icing roadway cover system |
US20070209799A1 (en) * | 2001-10-24 | 2007-09-13 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20060137864A1 (en) * | 2002-09-23 | 2006-06-29 | Schmidt + Clemens Gmbh & Co. Kg | Pipe section for a pipe coil |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US20040177966A1 (en) * | 2002-10-24 | 2004-09-16 | Vinegar Harold J. | Conductor-in-conduit temperature limited heaters |
US20040140096A1 (en) * | 2002-10-24 | 2004-07-22 | Sandberg Chester Ledlie | Insulated conductor temperature limited heaters |
US8200072B2 (en) | 2002-10-24 | 2012-06-12 | Shell Oil Company | Temperature limited heaters for heating subsurface formations or wellbores |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8224164B2 (en) * | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US20090214196A1 (en) * | 2008-02-15 | 2009-08-27 | Jarle Jansen Bremnes | High efficiency direct electric heating system |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US20110124228A1 (en) * | 2009-10-09 | 2011-05-26 | John Matthew Coles | Compacted coupling joint for coupling insulated conductors |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
US20110132661A1 (en) * | 2009-10-09 | 2011-06-09 | Patrick Silas Harmason | Parallelogram coupling joint for coupling insulated conductors |
US20110124223A1 (en) * | 2009-10-09 | 2011-05-26 | David Jon Tilley | Press-fit coupling joint for joining insulated conductors |
US8485847B2 (en) | 2009-10-09 | 2013-07-16 | Shell Oil Company | Press-fit coupling joint for joining insulated conductors |
US8257112B2 (en) | 2009-10-09 | 2012-09-04 | Shell Oil Company | Press-fit coupling joint for joining insulated conductors |
US20110134958A1 (en) * | 2009-10-09 | 2011-06-09 | Dhruv Arora | Methods for assessing a temperature in a subsurface formation |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8859942B2 (en) | 2010-04-09 | 2014-10-14 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8485256B2 (en) | 2010-04-09 | 2013-07-16 | Shell Oil Company | Variable thickness insulated conductors |
US8502120B2 (en) | 2010-04-09 | 2013-08-06 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US8967259B2 (en) | 2010-04-09 | 2015-03-03 | Shell Oil Company | Helical winding of insulated conductor heaters for installation |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US9337550B2 (en) | 2010-10-08 | 2016-05-10 | Shell Oil Company | End termination for three-phase insulated conductors |
US9755415B2 (en) | 2010-10-08 | 2017-09-05 | Shell Oil Company | End termination for three-phase insulated conductors |
US8586866B2 (en) | 2010-10-08 | 2013-11-19 | Shell Oil Company | Hydroformed splice for insulated conductors |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8586867B2 (en) | 2010-10-08 | 2013-11-19 | Shell Oil Company | End termination for three-phase insulated conductors |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
US9048653B2 (en) | 2011-04-08 | 2015-06-02 | Shell Oil Company | Systems for joining insulated conductors |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9226341B2 (en) | 2011-10-07 | 2015-12-29 | Shell Oil Company | Forming insulated conductors using a final reduction step after heat treating |
US9080917B2 (en) | 2011-10-07 | 2015-07-14 | Shell Oil Company | System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor |
US9080409B2 (en) | 2011-10-07 | 2015-07-14 | Shell Oil Company | Integral splice for insulated conductors |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
WO2017025098A1 (en) * | 2015-08-10 | 2017-02-16 | National Oilwell Varco Denmark I/S | An unbonded flexible pipe |
EP4472354A1 (en) * | 2023-06-02 | 2024-12-04 | Aker Solutions AS | Heater assembly and reactor assembly |
Also Published As
Publication number | Publication date |
---|---|
DE1954458A1 (en) | 1970-05-14 |
FR2021838A1 (en) | 1970-07-24 |
DE1954458B2 (en) | 1971-07-29 |
GB1251095A (en) | 1971-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3629551A (en) | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current | |
US3293407A (en) | Apparatus for maintaining liquid being transported in a pipe line at an elevated temperature | |
US3706872A (en) | System for electrically heating fluid-conveying pipe lines and other structures | |
US3515837A (en) | Heat generating pipe | |
US3630038A (en) | Method for laying an underground pipeline | |
US5979506A (en) | Arrangement in a pipe bundle | |
US3665154A (en) | Method for constructing transportation pipes and heat generating pipes utilizing skin-effect current | |
US4645906A (en) | Reduced resistance skin effect heat generating system | |
DK173871B1 (en) | Method of heating a transport pipeline, transport pipeline provided with heating means and method of placing a system of electrical conductors along a transport pipeline | |
US2740095A (en) | Electrical conductor | |
EP0036322B1 (en) | Compact induced-current heat-generating pipe system and construction incorporating it | |
US3755650A (en) | Elongated heat-generating apparatus providing for a reduction in the highest voltage to be applied | |
JPS5852315B2 (en) | Epidermal current heating pipeline | |
US3524966A (en) | Heat-generating pipe utilizing skin effect of a.c. having improved insulation in conductor line | |
US3591770A (en) | Heat generating pipe | |
US3632976A (en) | Differential and/or discontinuous heating along pipelines by heat-generating pipes utilizing skin-effect current | |
US3718804A (en) | Fixing heat-generating pipe utilizing skin effect current | |
WO2021122686A1 (en) | Heating systems | |
US3575581A (en) | Heat-generating pipe utilizing skin effect current controlled locally in heat generation by short-circuiting bridges | |
RU2662635C2 (en) | Induction-resistive electric heating system | |
US3522440A (en) | Method for supplying electricity to a heat-generating pipe utilizing skin effect of a.c. | |
US3523177A (en) | Method for feeding electric power to heat generating bodies of a plurality of sections | |
Schmill | Variable soil thermal resistivity-steady-state analysis | |
RU182642U1 (en) | DEVICE FOR HEATING INDUSTRIAL OBJECTS | |
CA1080291A (en) | Heating apparatus partly equipped with skin effect heat-generating pipe |