NO822797L - METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS - Google Patents

METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS

Info

Publication number
NO822797L
NO822797L NO822797A NO822797A NO822797L NO 822797 L NO822797 L NO 822797L NO 822797 A NO822797 A NO 822797A NO 822797 A NO822797 A NO 822797A NO 822797 L NO822797 L NO 822797L
Authority
NO
Norway
Prior art keywords
reduction
zone
gasification
synthesis gas
carbothermic reduction
Prior art date
Application number
NO822797A
Other languages
Norwegian (no)
Inventor
Willi Ports
Edgar Goldmann
Friedrich Wilhelm Pietzarka
Ulrich Neumann
Peter Meurer
Original Assignee
Hoechst Ag
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6139509&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO822797(L) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst Ag, Uhde Gmbh filed Critical Hoechst Ag
Publication of NO822797L publication Critical patent/NO822797L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • C01B25/027Preparation of phosphorus of yellow phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/942Calcium carbide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/08Continuous processes with ash-removal in liquid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Industrial Gases (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

Den autoterme forgassing av karbonrike materialer spesielt av koks og kull, med teknisk rent oksygen eller blandinger av oksygen og tilsetningsgasser, fortrinnsvis vanndamp, nitrogen eller karbondioksyd er kjent. Forgassingen føres deretter i et egnet reaktorrom, som kan ha forskjellige utførelsesformer, således at forgassingen kan forløpe etter typen, f. eks. av flyvestrømforgassing eller fastlagringsforgassing ved normaltrykk eller forhøyet trykk. Hittil anvendte tilslagsstof f er til karbonrike mat:erialer, skal overveiende gunstig påvirke slaggens fysikalske egenskaper. The autothermal gasification of carbon-rich materials, especially coke and coal, with technically pure oxygen or mixtures of oxygen and additive gases, preferably water vapor, nitrogen or carbon dioxide, is known. The gasification is then carried out in a suitable reactor room, which can have different designs, so that the gasification can take place according to the type, e.g. of fly stream gasification or fixed storage gasification at normal pressure or elevated pressure. Until now, aggregates used for carbon-rich materials must predominantly have a favorable effect on the slag's physical properties.

Således omtales i tysk patent 1 068 4-15 en fremgangsmåte til fremstilling av syntese- eller brenngass med forgassing av faste brennstoffer med oksygen, ved temperaturer fra 1200 til 1375°C, idet for nedsettelse av slag-smelt etemperaturen kan tilsettes et flussmiddel, f. eks. Thus, German patent 1 068 4-15 describes a method for the production of synthesis or combustion gas with gasification of solid fuels with oxygen, at temperatures from 1200 to 1375°C, as a flux can be added to reduce the slag-melting temperature, e.g. e.g.

kalk. Ved "fremgangsmåten ifølge DAS 1 508 083 for fremstilling av reduksjonsgasser til jernfremstilling ved forgassing av faste, karbonholdige brennstoffer med luft i hvirvelsjikt ved 1000 til 1500UC tilsett er man til brenn-:: stoffene med kalksten','~ kalk eller kiselsyre- og leirjord-holdig materialer i slike mengder at de øker/askesmelte-punktet over arbeidstemperaturen. I DE-AS 25 20 584 omtales forgassing av svovelholdig kull i en jernbadreaktor idet kalk, kalksten eller dolomitt haes på jernbadet for å frem-bringe et slagg som virker avsvovlende. DE-PS 930 539 og 1 012 4.20 omtaler en fremgangsmåte til gassfrembringelse hvor vanndamp ved 775 - 980°C innføres i en blanding av karbonholdig, fast brennstoff og kalsiumoksyd eller kalk, lime. In the "method according to DAS 1 508 083 for the production of reducing gases for iron production by gasification of solid, carbon-containing fuels with air in a fluidized bed at 1000 to 1500UC, one adds to the fuel:: limestone','~ lime or silicic acid and clay soil -containing materials in such quantities that they increase the ash melting point above the working temperature. In DE-AS 25 20 584, the gasification of sulphurous coal in an iron bath reactor is described, whereby lime, limestone or dolomite is added to the iron bath to produce a slag that has a desulfurizing effect DE-PS 930 539 and 1 012 4.20 mentions a method for gas generation where steam at 775 - 980°C is introduced into a mixture of carbonaceous, solid fuel and calcium oxide or lime,

idet den i ieaks jonssonen nærværende mengde av kalsiumoksyd eller kalk er tilstrekkelig for omtrent å omdanne det sam-hde dannede karbondioksyd til karbonat. in that the amount of calcium oxide or lime present in the ion zone is sufficient to approximately convert the co-formed carbon dioxide into carbonate.

Ved fremgangsmåten ifølge US-patent 3 01 7 259 dispergeres koks og kalk i vanndamp, og omsettes med oksygen i en hvirvelsjiktreaktor ved 1650 - 2750°C, idet det opp står kalsiumkarbid og syntesegass (CO + H^). Reaksjonsproduktet avkjøles med hydrokarbonolj e til under 4-25°C, In the method according to US patent 3 01 7 259, coke and lime are dispersed in water vapour, and reacted with oxygen in a fluidized bed reactor at 1650 - 2750°C, calcium carbide and synthesis gas (CO + H^) being formed. The reaction product is cooled with hydrocarbon oil to below 4-25°C,

idet det adskill»e<s>en suspensjon av kal siumkarbid av syntesegassen. as it separates a suspension of calcium carbide from the synthesis gas.

Ved fremgangsmåten ifølge oppfinnelsen anvendes utvalgte tilsetningsstoffer som minst finner noen bestanddeler av den fra mineralen i kullen resulterende aske eller slagg ved kjemisk reaksjon, hvorved i en sekundær-reaksjon fremstilles kjemisk-teknisk utnyttbare produkter såkalte verdistof f er. Derved foroppvarmes tilsetningsstoffene ved den varme syntesegass til den nødvendige temperatur, In the method according to the invention, selected additives are used which at least find some components of the ash or slag resulting from the mineral in the coal by chemical reaction, whereby in a secondary reaction, chemically-technically usable products are produced, so-called valuable substances. Thereby, the additives are preheated by the hot synthesis gas to the required temperature,

og energibehovet av den endoterme sekundær-reaksjon dekkes fullstendig ved en del av den autoterme forgassing frigjorte energi. Sekundærproduktet fjernes smeltet fra reak-torro.mmet. and the energy requirement of the endothermic secondary reaction is completely covered by part of the energy released by the autothermal gasification. The secondary product is removed melted from the reactor space.

Som kjent er spesielt de fossile, faste karbon-bærere som"sten- og brunkull eller deres koks utstyrt ofte meget forskjellig innhold av ballaststoff. Ball ast stoffet består hovedsaklig av et flertall mineraler som delvis foreligger i god blanding med karbonet og som gløderesiduet danner asken. I asken lar det seg påvise mer enn 35 ele-menter hvorfor består interesse i en råstoffutvinning fra asken. Hittil har imidlertid ingen tilsvarende fremgangsmåter slått igjennom. Ansvarlige for dette er fremfor alt det vanligvis meget lite innhold av asken av verdifulle stålf o redl ende metaller som på sin side hittil. :,sto i for-grunnen for interessen. Hovedmineralene forblir derved sterkt uten interesse. Enskjønt flyveaske oe; granulert aske er utnvttbar i bygningsindustrien hvilket det allerede i dag i kraftverk dannede slagg- og askemengder som sten-kull bare kan tilføres inntil ca. 15% og ved brunkull bare til rundt 8 % til en utnytting store problemer. Disse blir. sterkere når de i fremtiden taes i drift i stortekniske kullforgassingsanlegg, da på den ene side den høye an-rikningsgrad av tungmetaller og radionuklider utelukker be stemte anvendelsesområder av asken- resp. slaggen som tideligere ble foreslått, på den annen side er kapasiteten i utnyttelsen uttømt,og aske- og slagguttaket økes ytterligere ved kullforgassingen. As is well known, especially the fossil, solid carbon carriers such as hard and lignite or their coke are often equipped with a very different content of ballast material. The ballast material mainly consists of a majority of minerals which are partly present in a good mixture with the carbon and of which the glow residue forms the ash More than 35 elements can be detected in the ash, which is why there is interest in extracting raw materials from the ash. So far, however, no similar methods have succeeded. The reason for this is above all the usually very low content of the ash in valuable steel products. metals which, in turn, have been at the forefront of interest until now. The main minerals thus remain largely uninterested. Although fly ash and granulated ash can be used in the construction industry, which already today in power plants forms slag and ash quantities such as coal can only be added up to about 15% and in the case of lignite only up to around 8% to a utilization major problems. These will become. stronger when they in the future one is put into operation in large-scale coal gasification plants, as on the one hand the high degree of enrichment of heavy metals and radionuclides excludes certain application areas of the ash or the slag that was previously proposed, on the other hand, the utilization capacity is exhausted, and the ash and slag intake is further increased by the coal gasification.

Ved kjente kullforgassingsanlegg herskerIn the case of known coal gasification plants it prevails

det i stedet for aske- og slaggdannelse vanligvis meget høye temperaturer. Samtidig foreligger aske- resp. slagg vanligvis smeltet. Mineralene i kullene hovedsaklig ilit og kalinit som leirjordmineraler, serisid som glimmermineral-er, pyrit, markasit, limonit, hematit og jernspat som jern-mineral.er, brunspat, ankerit, kalkspat og dolomitt som karbonspeter, apatit som fosformineral og kvarts, dertil dessuten en rekke ytterligere imidlertid skjeldnere påvis-bare oksyder, hydroksyder og sulfider samt bestemte salter, viser alt etter oppvarmingshastighet og atmosfære forskjellige forhold. Generelt utdrives i første rekke ved oppvarmingen adsorbert vann, deretter krystallvann, vann fra 8H-gruppen og karbondioksyd fra karbonater. Ved temperaturer over 1500°C finner det sted en tydelig transport av noen oksyder over gassfasen under dannelse av gasskomplekser monoksyder eller sulfider, som etter tilbakereaksjon fører til aero soldanning. Spesielt finner dette sted ved silisiumdioksyd, aluminiumoksyd og jernoksyd. Dessuten ned-bryter mineraler ved de høye oppvarmingshastighetec sterkt til amorfe oksyder, som meddrives av syntesegass-strømmen. instead of ash and slag formation, usually very high temperatures. At the same time, ash or slag usually melted. The minerals in the coals are mainly illite and kalinite as clay minerals, sericide as mica minerals, pyrite, marcasite, limonite, hematite and iron spar as iron minerals, lignite, ankerite, calc spar and dolomite as carbon spar, apatite as phosphorus mineral and quartz, in addition a number of further, but rarer detectable oxides, hydroxides and sulphides as well as certain salts, show different conditions depending on the heating rate and atmosphere. In general, adsorbed water is expelled first by heating, then crystal water, water from the 8H group and carbon dioxide from carbonates. At temperatures above 1500°C, there is a clear transport of some oxides over the gas phase with the formation of gas complexes monoxides or sulphides, which after back-reaction lead to aero solar formation. In particular, this takes place with silicon dioxide, aluminum oxide and iron oxide. Moreover, at the high heating rates, minerals break down strongly into amorphous oxides, which are carried along by the synthesis gas flow.

En stor del av silisiumdioksyd smelter og danner senere en gassaktig masse. Under sterkt reduserte betingelser, fremfor alt ved nærvær av karbon kan det også iakttas reduksjon av metalloksydene til metaller. Foretrukket blir opptreden av jern, men også dannelse av kalsiumkarbid som likeledes dannes intermediært over et metallisk trinn eller opptreden av ferrosilisium iakttas. A large part of the silicon dioxide melts and later forms a gaseous mass. Under strongly reduced conditions, above all in the presence of carbon, reduction of the metal oxides to metals can also be observed. The appearance of iron is preferred, but also the formation of calcium carbide which is also formed intermediately above a metallic step or the appearance of ferrosilicon is observed.

Ved fremgangsmåten ifølge oppfinnelsen, blir disse egenskaper av de mineralske bestanddeler av de karbonrike materialer spesielt kull, kombinert og utnyttet på In the method according to the invention, these properties of the mineral components of the carbon-rich materials, especially coal, are combined and utilized on

gunstig måte.favorable way.

Derved blirThereby becomes

1. Store deler av slaggene og asken kjemisk om-dannet og overført til kjemisk-tekniske produkter, 2. Enkelte komponenter f. eks. Al^O^anriker i en støvfraksjon som gir denne gode hydrauliske bindemiddel-egenskap, 3. De ved spesielt høyt temperaturnivå dannede forgassingsvarme utnyttes direkte for høye temperaturreak-sjoner, k> Syntesegassens karbondioksyd holdes minimal, og 5. Store deler av det ellers fra reaktoren ut-tredende flyvestøv tilbakeholdes i reaktoren og omdannes ved kjemisk reaksjon. Dette oppnås ved at den varme syntesegass umiddel-bart etter dens dannelse, føres direkte inn i en lagring av et tilslagsstoffblanding. Tilslagsstoffblaningen inneholder et reaksjonsmiddel, spesielt karbon i form av koks-, svovelkoks, antrasit, trekull eller torvkoks til slaggreduksjon. Derved utskilles de delvis flytende slagg- og flyvestøvaskepartikler for en stor del på lagringssjikt ets overflate og danner derpå en overflatefilm. Her inntrer på grunn av de høye temperaturer reaksjon og det utdanner seg en reduksjons sone. Under forbruk av tilslagsstoffblandingen danner det seg detønskede sekundærprodukt. Dette kan f. eks. være ferrosilisium eller kalsiumkarbid. Dimen-sjoneringen av de spesifikke tilslagsstoffmengder referert til anvendt mengde av karbonrikt materiale, kan varieres innen vide grenser. Fornuftigvis gir mengden av nøkkel-komponenter i asken som skal omsettes over støkiometrien avomdanningsreaksjonen den nedre grense av mengden av tilslagsstof f er, (sml. eks..1:), mens den ved den autoterme forgassingsreaksjonens frigjorte varmemengde danner over energiforbruket omdannelsesreaksjonen den øvre grense av mengde av tilslagstoffer (sml. eks. 2). I detalj, vedrører nå oppfinnelsen en fremgangsmåte til fremstilling av syntesegass, (CO + Hg) ved autoterm forgassing av findelte karbonrike materialer med oksygen eventuelt i nærvær av tilsetningsgassér'.'idet fremgangsmåten erkarakterisert vedat karbonstøv med en partikkel-størrelse på 0 - 0, 1 mm sammen med oksygen og eventuelt en tilsetningsgass inndyses i en 2000 til 2600°C holdt forgassingssone av den dannede flyveaskeholdige rå syntesegass ved den iboende termiske energi føres gjennom en med utgangsstoffene for en endoterm karbotermisk reduksjon fylte reduksjonssone og formert den ved den karbotermiske reduksjon dannede syntesegass gjennom en dertil knytt et med de samme stoffer fylt foroppvarmingssone og fjernes med en temperatur på 300 - 1500°C til rensning og konvertering, og at under reduksjons sonen uttas reduksjonsproduktet fra den karbotermiske reduksjon samt danne et slagg smelteflytende fra en saml"e- og etterreaks jonsone. Fremgangsmåten ifølge oppfinnelsen kan videre fortrinnsvis og etter valg værekarakterisert vedat a) Askedelen av det inndysede karbonstøv, samt de for den karbotermiske reduksjon anvendte kull, minst delvis anvendes som reaksjonsdeltager ved den karbotermiske reduksjon, b) en rå syntesegass som forlater foroppvarmingssonen befries for støv og aske, og disse faststoffer inndyses i det minste delvis i kret sløp-sammen med nytt karbon-støv igjen over ,'f orgassingssonen inn i reduks jonssonen, c) Utgangsstoffer for den karbotermiske reduksjon 1. Large parts of the slag and ash chemically transformed and transferred to chemical-technical products, 2. Certain components, e.g. Al^O^enriches in a dust fraction which gives this good hydraulic binder property, 3. The gasification heat generated at a particularly high temperature level is used directly for high temperature reactions, k> The carbon dioxide in the synthesis gas is kept to a minimum, and 5. Large parts of the otherwise from flying dust exiting the reactor is retained in the reactor and converted by chemical reaction. This is achieved by the hot synthesis gas being fed directly into a storage of an aggregate mixture immediately after its formation. The aggregate mixture contains a reaction agent, especially carbon in the form of coke, sulfur coke, anthracite, charcoal or peat coke for slag reduction. Thereby, the partially liquid slag and fly ash particles are separated for a large part on the storage layer's surface and then form a surface film. Here, due to the high temperatures, a reaction occurs and a reduction zone forms. During consumption of the aggregate mixture, the desired secondary product is formed. This can e.g. be ferrosilicon or calcium carbide. The dimensioning of the specific amounts of aggregate referred to the amount of carbon-rich material used can be varied within wide limits. Sensibly, the amount of key components in the ash to be converted above the stoichiometry of the amoformation reaction gives the lower limit of the amount of aggregates f is, (cf. ex. 1:), while the amount of heat released by the autothermal gasification reaction over the energy consumption of the conversion reaction forms the upper limit of the amount of aggregates (cf. ex. 2). In detail, the invention now relates to a method for the production of synthesis gas, (CO + Hg) by autothermal gasification of finely divided carbon-rich materials with oxygen, possibly in the presence of additive gases. The method is characterized by carbon dust with a particle size of 0 - 0, 1 mm together with oxygen and possibly an additive gas is injected into a 2000 to 2600°C gasification zone of the formed fly ash-containing raw synthesis gas by the inherent thermal energy is passed through a reduction zone filled with the starting materials for an endothermic carbothermic reduction and formed by the carbothermic reduction formed synthesis gas through an associated preheating zone filled with the same substances and is removed at a temperature of 300 - 1500°C for purification and conversion, and that during the reduction zone the reduction product from the carbothermic reduction is removed as well as forming a slag molten from a collective and afterreaks jonzone The method according to the invention can further preferably and optionally characterized by a) The ash part of the injected carbon dust, as well as the coal used for the carbothermic reduction, is at least partially used as a reaction participant in the carbothermic reduction, b) a raw synthesis gas that leaves the preheating zone is freed of dust and ash, and these solids is at least partially injected into the cycle together with new carbon dust again above the forgassing zone into the reduction zone, c) Starting materials for the carbothermic reduction

. anvendes en kornstørrelse på 10 til 20 mm, eller på 20 -. a grain size of 10 to 20 mm is used, or of 20 -

4-0 mm,4-0 mm,

d) Reduksjonssonen består sideveis i åpen forbindelse ved minst to forgassingssoner og oppad med foroppvarmingssonen. e) Fo roppvarmingsreduksjon en og reduksjorissonen beskikkes med koks, jernavfall og eventuelt kvarts, idet man som reaksjonsprodukt fra den karbotermiske reduksjon ved 1300 til 1800°C utvinner ferrosilisium, f) foroppvarmingssonen og reduksjonssonen beskikkes med koks eller kalsinert antrasit og kalk, idet som reaksjonsprodukt fra den karbotermiske reduksjon ved 1800 til 2300°C utvinnes kalsiumkarbid, g) foroppvarmingssonen og reduksjonssonen beskikkes med koks, kalsiumfosfat og kvarts- idet det som reaksjonsprodukt av den karbotermiske reduksjon ved 1300 til 170o°C utvinnes elementært fosfor, h) foroppvarmingssonen av reduksjonssonen beskikkes med koks og oksydisk jernmalm, idet det som reaksjonsprodukt av den karbotermiske reduksjon ved 13 00 til 1800°0 utvinnes metallisk jern, d) The reduction zone consists laterally in an open connection with at least two gasification zones and upwards with the preheating zone. e) Preheating reduction and the reduction zone are coated with coke, iron waste and possibly quartz, with ferrosilicon extracted as a reaction product from the carbothermic reduction at 1300 to 1800°C, f) the preheating zone and the reduction zone are coated with coke or calcined anthracite and lime, with the reaction product calcium carbide is extracted from the carbothermic reduction at 1800 to 2300°C, g) the preheating zone and the reduction zone are coated with coke, calcium phosphate and quartz, as elemental phosphorus is extracted as a reaction product of the carbothermic reduction at 1300 to 170o°C, h) the preheating zone of the reduction zone is coated with coke and oxidic iron ore, as metallic iron is extracted as a reaction product of the carbothermic reduction at 13 00 to 1800°0,

i) at det som tilsetningsgass anvendes CO, COg, Ng» vanndamp eller i kretsløp ført syntesegass, i) that the additive gas used is CO, COg, Ng» water vapor or synthetic gas fed into the circuit,

j) i forgassingssonen arbeides" med et støkiometrisk oksygenoverskudd i forhold til oksydasjonen til CO, j) in the gasification zone, work is done" with a stoichiometric excess of oxygen in relation to the oxidation to CO,

k) en komponent av utgangsstoffene tildoseres for den karbotermiske reduksjon målrettet langs den indre vegg av foroppvarmingssonen og reduksjons son en. k) a component of the starting materials is dosed for the carbothermic reduction targeted along the inner wall of the preheating zone and reduction zone one.

Videre omfatter oppfinnelsen også en innretning (sml. fig. 1) til gjennomføring av fremgangmsåten idet innretningen erkarakterisert veden sjaktovn 6 som ovenifra og nedad består av et langstrakt foroppvarmingskammer 6c, Furthermore, the invention also includes a device (cf. Fig. 1) for carrying out the process, as the device is characterized as a wood shaft furnace 6 which, from top to bottom, consists of an elongated preheating chamber 6c,

et reduksjonskammer 6b, og etterreaksjonskammer 6d, som åpent går over i hverandre, sideveis til reduksjonskammeret 6b tilgrensende og med dette åpent forbundet sylindriske forgassingskammeret 6a, hvori det hver løper inn én dyse 3 for den felles tilførsel av karbonstøv, oksygen og eventuelt tilsetningsgasser, en tilførsel 8 for utgangsstoffene a reduction chamber 6b, and post-reaction chamber 6d, which open into each other, laterally to the reduction chamber 6b adjacent to and with this openly connected cylindrical gasification chamber 6a, into which each runs one nozzle 3 for the common supply of carbon dust, oxygen and possibly additive gases, a supply 8 for the starting materials

av den karbotermiske reduksjon, og en avtrekksledning 9,of the carbothermic reduction, and an exhaust line 9,

12 for rå syntesegass ved toppen av sjaktovnen 6 minst-en avtrekksledning 7a, 7b, på etterreaksjonskammer 6d til bortføring av smeltet slagg og smelteflytende reaksjonsprodukt fra den karbotermiske reduksjon. Innretningen ifølge oppfinnelsen kan videre fortrinnsvis etter valg værekarakterisert veda) hver gang en av hver av dysene 3 forankoblet mellombunker 3 for karbonstøv en avstøvningsinnretning 11 1 avtrekkledning 9, 12 for rå syntesegass og tilbakeførings-ledninger 13 for de utskilte mineralske støv fra avstøvnings-innretningen 11 til det enkelte mellombunkere 2, 12 for raw synthesis gas at the top of the shaft furnace 6, at least one exhaust line 7a, 7b, on post-reaction chamber 6d for removal of molten slag and molten reaction product from the carbothermic reduction. The device according to the invention can also preferably, by choice, be characterized by) each time one of each of the nozzles 3 pre-connected intermediate bunker 3 for carbon dust a dedusting device 11 1 extraction line 9, 12 for raw synthesis gas and return lines 13 for the secreted mineral dust from the dedusting device 11 to the individual intermediate bunkers 2,

b) i den øvre del av sjaktovnen 6 loddrett og sirkelformet anordnede skilleblikk 16 til avgrensning av b) in the upper part of the shaft furnace 6 vertically and circularly arranged dividers 16 to delimit the

ringrom 6e mellom skilleblikkene 16 og den indre vegg av s j aktovn.en "6, samt ved minst to transportledninger 15 for tilførsel av en komponent av utgangsstoffene for den karbotermiske reduksjon gjennom ringrommet 6e under dannelse av en ringformet lagringsmantel (sml. fig. 2) som beskytter den indre vegg av sjaktovnen 6. annulus 6e between the separators 16 and the inner wall of the shaft furnace "6, as well as at least two transport lines 15 for the supply of a component of the starting materials for the carbothermic reduction through the annulus 6e while forming an annular storage mantle (cf. fig. 2) which protects the inner wall of the shaft furnace 6.

Fremgangsmåten ifølge oppfinnelsen lar seg utføre på mangfoldige måter. Under henvisning til tegningens figu-rer 1 og 2 .skal det nærmere forklares fremgangsmåter og innretning ifølge oppfinnelsen idet karbonrike materialer som er bestemt til forgassing (karbonstøv)i det følgende kort betegnes med forgassingskull. The method according to the invention can be carried out in a variety of ways. With reference to figures 1 and 2 of the drawing, the methods and device according to the invention will be explained in more detail, as carbon-rich materials intended for gasification (carbon dust) are briefly referred to below as gasification coal.

Fig. 1Fig. 1

Finmalt og fortørket forgassingskull (partikkel-størrelse: 90 % ^ um haes over tilførsel 1 og mellombunker 2 til hver gang en støvforgassingsbrenner 3, hvor de med oksygen fra ledning k og eventuelt tilsetningsgass, spesielt karbondioksyd, vanndamp, karbonmonooksyd og råsyntesegass, injiseres fra ledning 5 inn i forgassingssone 6a av reaktorrommet (sjaktovnen) 6 ifølge oppfinnelsen og forgasses autotermt. Derved kan innen oppfinnelsens ramme oksygen og/eller tilsetningsgass anvendes som bæregass for forgassingskull. Reaktorrommet (sjaktovn) 6 er ifølge oppfinnelsen utformet således at direkte til forgassingssonen 6a mot aksen renser en reduksjonsone 6b som består av et løst sjikt av hver gang tilslagsstoffblanding. Derved er ko r-ningen av tilslagsstoffer og denne blanding fortrinnsvis 10 - 20 mm eller 20 - 4-0 mm. Over sjiktet er det anordnet en foroppvarmingssone 6c, som likeledes inneholder et løst sjikt av tilslagsstoffblanding således at tyngdekraftinn-virkning til tilslagsstoffblandingen nedad tilsvarende forbruk i reduksjons sonen 6b. Under reduksjonssonen 6b er anordnet en samle- og etterreaksjonssone 6d, hvori det drypper inn fra reduksjons sone 6b avdryppenée smeltet slagg og reduksjonsprodukt. Samle- og etterreaksjonssonen 6d er utstyrt med minst en lukkbar avstikningsåpning så- Finely ground and pre-dried gasification coal (particle size: 90% ^ um) is fed over supply 1 and intermediate bunker 2 to each time a dust gasification burner 3, where they are injected with oxygen from line k and possibly additive gas, especially carbon dioxide, water vapour, carbon monoxide and crude synthesis gas from line 5 into the gasification zone 6a of the reactor chamber (shaft furnace) 6 according to the invention and is autothermally gasified. Thereby, within the framework of the invention, oxygen and/or additive gas can be used as a carrier gas for gasification coal. The reactor chamber (shaft furnace) 6 is according to the invention designed so that directly to the gasification zone 6a towards the axis cleans a reduction zone 6b which consists of a loose layer of each time aggregate mixture. Thereby, the concentration of aggregates and this mixture is preferably 10 - 20 mm or 20 - 4-0 mm. Above the layer, a preheating zone 6c is arranged, which likewise contains a loose layer of aggregate mixture so that the effect of gravity on the aggregate the downward trend corresponds to consumption in the reduction zone 6b. Below the reduction zone 6b, a collection and post-reaction zone 6d is arranged, into which the molten slag and reduction product drips from the reduction zone 6b. The collection and after-reaction zone 6d is equipped with at least one closable tap-off opening so

ledes at smeltet slagg og smeltet reduksjonsprodukt kan fjernes over 1edningene-7a og/eller 7b. Deretter granuleres eller avkjøles i kar. is led that molten slag and molten reduction product can be removed over the 1-ednings-7a and/or 7b. It is then granulated or cooled in vats.

Mens i forgassingssonen 6a temperaturen innstilles ved hjelp av tilsetningsgasser på ca. 2000 - 2600UC, fr em-kommer i reduksjonssonen 6b en temperatur på 1300 - 2300°C. Tilslagstoffblandingen inneholder et reduksjonsmiddel, fortrinnsvis koks, avgassingskoks, antrasit, trekull eller torvkoks, og for denønskede reaksjon<y>spesifikke ytterligere materialer. Viktige bestanddeler tillater reduksjonsmidlene bare så vidt som deres'avgassings- eller reaksjonsprQdukter (hydrokarboner, tjære) ikke forstyrrer videre-forarbeidel sea av den fremstilte syntesegass. Eventuelt kan slike -'reduksjons-midl er på forhånd kalsineres. De i forgassingssonen 6a dannede forgassingsprodukter føres tvangsmessig igjennom reduksjonssonen 6b og foroppvarmingssonen 6c, hvor de av- While in the gasification zone 6a the temperature is set using additive gases of approx. 2000 - 2600UC, fr em-comes in the reduction zone 6b a temperature of 1300 - 2300°C. The aggregate mixture contains a reducing agent, preferably coke, degassing coke, anthracite, charcoal or peat coke, and for the desired reaction<y>specific additional materials. Important constituents allow the reducing agents only insofar as their degassing or reaction products (hydrocarbons, tar) do not interfere with further processing of the produced synthesis gas. Optionally, such reducing agents can be calcined in advance. The gasification products formed in the gasification zone 6a are forced through the reduction zone 6b and the preheating zone 6c, where they

gir en iboende varme til tilslagsstoffblandingen selv trer ut ved overdelen av reaksjonsrommet med temperaturer mellom 350 og 1500°C. Alt etter kravet til mengden av frembrakt provides an inherent heat until the aggregate mixture itself emerges at the top of the reaction chamber with temperatures between 350 and 1500°C. All according to the requirement for the quantity produced

reduksjonsprodukt og/eller den ønskede uttredelsestempera-tur av rågassen kan tilslagsstoffmengden doseres tilsvarende etter mengde og sammensetning. Minimale råsyntesegass-temperaturer fremkommer når foroppvarmingssonen er ut- reduction product and/or the desired exit temperature of the raw gas, the amount of aggregate can be dosed accordingly according to quantity and composition. Minimum raw synthesis gas temperatures occur when the preheating zone is

formet således at en til varmeutvekslingen disponible lag-ringsoverflate blir meget stor og energiforbruket ved reduk-sjonsreaks jonen til svarer:: energif rig j øringen ved hjelp av den autoterme forgassingsreaksjonen. Ved overdelen av reaksjonsrommet er det anordnet en egnet innretning til inn-føring av den over 8 tilførte tilslagsstoff blanding, fortrinnsvis i form av rutsjebaner, som avtettes mot gass, shaped so that a storage surface available for heat exchange becomes very large and the energy consumption by the reduction reaction corresponds to: the energy release by means of the autothermal gasification reaction. At the upper part of the reaction space, there is a suitable device for introducing the above 8 added aggregate mixture, preferably in the form of slides, which are sealed against gas,

eller giktlukker. I ledningen 9 kan det ved høye uttredel-sestemperaturer av.romsyntesegassen være anordnet en av-varmekar 10, således at råsyntesegassen avstøves i varme-avstøver 11, og kan bortledes over ledning 12. Det fra varm-avst.øvningen 11 fjernede støv, kan enten over ledning 13 or gout stopper. In line 9, at high exit temperatures of the room synthesis gas, a de-heating vessel 10 can be arranged, so that the raw synthesis gas is dedusted in a heat deduster 11, and can be led away via line 12. The dust removed from the hot-removal exercise 11 can either over wire 13

og mellombunker 2 igjen tilbakeføres i forgassing sovn 6a og reduks jonssonen 6b, eller uttas over ledning 14-, eller bestemte mengdefo-rhold samtidig føres over 13 og 14-. På denne måte kan man enten fjerne all restaske og ballast stoffer fra innsatt anvendte materialer som slagg, over ledningene 7a resp. 7b eller deler herav som støv fra 11 over ledning and intermediate bunker 2 is again fed back into the gasification bed 6a and reduction ion zone 6b, or is withdrawn via line 14-, or certain quantities are simultaneously fed via 13 and 14-. In this way, one can either remove all residual ash and ballast substances from inserted used materials such as slag, over the lines 7a or 7b or parts thereof as dust from 11 above the line

U. U.

Fig. 2.Fig. 2.

I en ytterligere utforming av fremgangsmåten ifølge oppfinnelsen, kan det til forskjell fra fig. 1 bare være foreskrevet å innføre en komponent av tilslagstoffblandingen over ledning 15, adskilt av en resterende til-slagstoffblanding inn i reaktorrommet og en hjelpeinnbygning 16 og oppnå en søyle- resp. sylindermantellignende for-deling av komponenten i lagringen. In a further design of the method according to the invention, in contrast to fig. 1 only be prescribed to introduce a component of the aggregate mixture via line 15, separated by a remaining aggregate mixture into the reactor space and an auxiliary build-in 16 and achieve a column or cylinder jacket-like distribution of the component in the storage.

Forgassingssonen kan beskikkes med overskytende oksygen hvorved det fremkommer høye gasstemperaturer. Dessuten overtar den ytre"lagringsmantel 6c en beskyttelses-funksjon for reaktorrommets indre vegg. The gasification zone can be coated with excess oxygen, which results in high gas temperatures. In addition, the outer storage jacket 6c takes over a protective function for the inner wall of the reactor chamber.

I de ■• følgende eksempler refererer vol u md el ene seg til normaltilstanden ved 270 K og 1,013 bar. In the ■• following examples vol u md el ene refers to the normal state at 270 K and 1.013 bar.

Eksempel 1Example 1

Det kreves syntesegass for frembringelse av rundt 52,5 tonn pr. time metanol. Hertil må det rundt frembringes 121 000 m^/time CO + Hg. hvilket skal foregå ved omdannelsen ifølge oppfinnelsen av silisiumdioksyd av asken til ferrosilisium 4-5 % Si ved autotermt, forgassing tørket finmalt (diameter = 90 $^90um) uvasket, rå finkull under tilsetning av fortørket høyovnskoks.4- ( diameter 10 - 20 mm) og jernavfall (95 % Fe). Derved transporteres tilsvarende fig. 1 over ledning 1 under 6o tonn/time finkullstøv (diameter 90 $^90 um) inn i bunkeren 2 og forgasses derifra i støvforgassningsbrennere 3 sammen med rundt 39 290 m pr/time 99,9 $-ig oksygen fra ledning 4-. Over ledning 8 er sjaktovnen 6 blitt utstyrt med en lagring av en blanding (diameter = 10 -20 mm) av koks (til reduksjon av SiOj-,) og knust jernavfall da det pr. time forbrukes ca. 4-, 17 tonn (2,08 tonn pr, time koks og 2,09 tonn pr. time jernavfall). Mens i forgassingssonen 6a under tilsetning av rundt 5000 m karbondioksyd fra ledning 5 som til setningsgass v<ed temperaturer på rundt 2000 - 2300°C danner syntesegass inntrer i reduksjonssone 6b slaggreduksjon. Derved reduseres såvel SiOg som også FegO-^og dannes ved rundt 1600°C ferrosilisium. Dette fremkommer smeltet, og drypper gjennom lagringen inn i samle- og etterreaksjonssone 6d, hvorfra det pr time fjernes 4-,2 tonn ferrosilisium 4-5 % Si over 7a resp. 7b. Syntesegassen føres deretter i tilslagsstoffblandingen og foroppvarmer denne i foroppvarmingsovn 6c til ca. 1500°C. Derved tilbakeholdes en del av den frembrakte flyveaske av lagringen, og tilføres igjen til reduksjonssone 6b. Syntesegassen unnviker over ledning 9, avvarmingskar 10 og varmav-støvningen 11-. Øver ledning 12 fjernes rundt 122 100 m<3>Synthesis gas is required to produce around 52.5 tonnes per hour methanol. For this, around 121,000 m^/hour of CO + Hg must be produced. which is to take place by the conversion according to the invention of silicon dioxide from the ash to ferrosilicon 4-5% Si by autothermic, gasification dried finely ground (diameter = 90 $^90um) unwashed, raw fine coal with the addition of pre-dried blast furnace coke.4- ( diameter 10 - 20 mm ) and iron waste (95% Fe). Thereby, corresponding fig. 1 over line 1 under 6o tons/hour of fine coal dust (diameter 90 $^90 um) into bunker 2 and is gasified from there in dust gasification burners 3 together with around 39,290 m per hour 99.9 $-ig oxygen from line 4-. Above line 8, the shaft furnace 6 has been equipped with a storage of a mixture (diameter = 10 -20 mm) of coke (for reduction of SiOj-,) and crushed iron waste as it per hour is consumed approx. 4-, 17 tonnes (2.08 tonnes per hour of coke and 2.09 tonnes per hour of iron waste). While in the gasification zone 6a, during the addition of around 5,000 m of carbon dioxide from line 5, which forms a settling gas at temperatures of around 2,000 - 2,300°C, synthesis gas enters the reduction zone 6b, slag reduction. Thereby, both SiOg and FegO-^ are reduced and ferrosilicon is formed at around 1600°C. This emerges molten, and drips through the storage into collection and post-reaction zone 6d, from which 4-.2 tonnes of ferrosilicon 4-5% Si over 7a or resp. 7b. The synthesis gas is then fed into the aggregate mixture and preheated in a preheating furnace 6c to approx. 1500°C. Thereby, part of the produced fly ash is retained by the storage, and fed back to reduction zone 6b. The synthesis gas escapes over line 9, heating vessel 10 and the heat-removing dust 11-. Around 122,100 m<3> will be removed above line 12

pr. time foravstøvet råsyntesegass (rundt 121 000 m 3 pr time CO + Hg) ved sammensetning: rundt 76 - 77 vol$ CO og rundt 22 vol% H2og rundt 1 - 2 vol% Ng, COg. Det i 11 utskilte støv tilbakeføre^delvis over 13. Den over 14- uttatte støvdel inneholder rundt 57 vekt$ AlgO-^ ved siden av hovedsaklig CaO og MgO. Over tilbakestøvmengden kan også mengden av den fra 6b over 7a resp. 7b medfjernede slagg på-virkes. Således fremkommer til sammen rundt 4-, 2 tonn pr. time støv og slagg. per hour pre-dusted raw synthesis gas (around 121,000 m 3 per hour CO + Hg) by composition: around 76 - 77 vol$ CO and around 22 vol% H2 and around 1 - 2 vol% Ng, COg. The dust separated in 11 returns^partially over 13. The part of dust extracted over 14 contains around 57 wt% of AlgO-^ next to mainly CaO and MgO. Above the return dust amount, the amount of it from 6b over 7a or 7b removed slag is applied. Thus, a total of around 4.2 tonnes per hour dust and slag.

Ved en vanlig flyvestrømforgasning ville mengden av støv og slagg utgjøre rundt 7,9 tonn pr. time. Slagg- In the case of a normal jet stream gasification, the amount of dust and slag would amount to around 7.9 tonnes per hour. slag-

og askeuttak kan altså med fremgangsmåten ifølge oppfinnelsen senkes rundt 4-2 %' i forhold til teknikkens stand. Samtidig frembringes ved økning av AlgO^-delen i flyvestøvfrak-sjonen (ledning 14-) et som bindemiddel anvendbart hydraulisk produkt, samt ferrosilisium 4-5 Si som ønsket verdifullt reduksjonsprodukt. and ash removal can thus be reduced by around 4-2%' in relation to the state of the art with the method according to the invention. At the same time, by increasing the AlgO^ part in the flying dust fraction (line 14-), a hydraulic product usable as a binder is produced, as well as ferrosilicon 4-5 Si which is the desired valuable reduction product.

Eksempel 2 .Example 2.

Ferrosilisiumfrembringelsen er en høytempera-■ turprosess som tideligere gjennomføres i elektrotermiske ovner. Fremgangsmåten ifølge oppfinnelsen lar seg også ut-vide således at man utvider tilslagsstoffmengden med "kvartsit, og dermed øker f erro salisiummengden. På denne måte kan den overveiende del av forgassingsvarme utvinnes, i form av en kjemisk bundet energi. Ferrosilicon production is a high-temperature process that was previously carried out in electrothermal furnaces. The method according to the invention can also be expanded so that the amount of aggregate is expanded with quartzite, and thus the amount of ferro salicium is increased. In this way, the predominant part of gasification heat can be extracted, in the form of a chemically bound energy.

En gassgenerator som ved fremgangsmåten ifølge oppfinnelsen gir rå syntesegass for drift av et 1000 tato metanolanlegg, produserer pr. time rundt 95 800 m 3 CO + H . Derved føres tilsvarende fig. 1 over ledning 1 og bunker 2 4-6,73 tonn pr. time uvasket fortørket og finmalt (diameter = 90 % ^ 90 ym) rå finkull til støvforgasningsbrennere 3, og forgasses autotermt med rundt 32 560 m oksygen, 99»9 % imidlertid uten tilsetningsgass ved 2200°C til 2600°C. Over ledning 18 er sjaktovn 6 beskikket med tilslagsstoffblanding (diameter = 10 - 20 mm) bestående av rundt 5,15 tonn pr. time høyovnkoks 4- (fortørket) rundt 7,4-1 tonn pr. time brutt kvartsit (95 %- i. g) og rundt 0,67 tonn pr. time jernavfall A gas generator which, by the method according to the invention, provides raw synthesis gas for the operation of a 1000 tato methanol plant, produces per hour around 95,800 m 3 CO + H . Thereby, the corresponding fig. 1 over line 1 and bunker 2 4-6.73 tonnes per hour unwashed pre-dried and finely ground (diameter = 90% ^ 90 ym) raw fine coal for dust gasification burners 3, and autothermally gasified with about 32,560 m of oxygen, 99»9%, however, without additive gas at 2200°C to 2600°C. Above line 18, shaft furnace 6 is coated with an aggregate mixture (diameter = 10 - 20 mm) consisting of around 5.15 tonnes per hour blast furnace coke 4- (pre-dried) around 7.4-1 tonnes per hour broken quartzite (95%- i. g) and around 0.67 tonnes per hour iron waste

(stykkformet ca. 95 % Fe).(piece-shaped approx. 95% Fe).

I reduks jonssone 6 b hersker betingelser somIn reduction zone 6 b, conditions such as

i eksempel 1. Her dannes rundt 5,89 tonn pr. time ferrosilisium, 75 % Si som smeltet flyter inn i samle- og etterreaks jons sone 6d, og fjernes deri fra over ledning 7a resp. 7b. Syntesegassen og den ved reduksjonen frigjorte CO strømmer i 6c gjennom lagringen av tilslagsstoffblanding og avkjøler seg derved til rundt 350 - 4-50°C. Deretter fjernes. over ledning 9 avstøvning 11 og ledning 12 rundt 97 050 m3 in example 1. Here around 5.89 tonnes are formed per hour ferrosilicon, 75% of the Si that has melted flows into the collection and post-reaction zone 6d, and is removed there from above line 7a resp. 7b. The synthesis gas and the CO released during the reduction flow in 6c through the aggregate mixture storage and thereby cool to around 350 - 4-50°C. Then removed. over line 9, dedusting 11 and line 12 around 97,050 m3

pr. time foravstøvet råsyntesegass (rundt 95 800 m o pr. time CO + Hg) med sammensetning: Rundt 77 vol# CO, rundt 21 vol$ Hg, og rundt 2 vol% Ng, COg. Flyvestøvet hvoriasom i eksempel 1 igjen AlgO^er anriket kan det som i eksempel 1 til-bakeføres over 13 og 2 i variable mengder til støvforgassings-brennerne 3 resp. uttas over 14-. Sammen fremkommer rundt 3,4-9 tonn pr. time støv og slagg. per hour pre-dusted raw synthesis gas (around 95,800 m o per hour CO + Hg) with composition: Around 77 vol# CO, around 21 vol$ Hg, and around 2 vol% Ng, COg. The flying dust, which in example 1 is again enriched with AlgO, can be fed back over 13 and 2 in variable quantities to the dust gasification burners 3 and 2, respectively. taken over 14-. Together, around 3.4-9 tonnes appear per year. hour dust and slag.

Dette er sammenlignet til den vanlige flyve-strømforgassing bare rundt 52 % av det normale støv- og slagguttak.I tillegg frembringes ifølge oppfinnelsen dessuten rundt 5,89 tonn pr. time ferrosilisium, 75 % Si som ønsket verdifulle reduksjonsprodukter. This is compared to the normal jet gasification, only around 52% of the normal dust and slag extraction. In addition, according to the invention, around 5.89 tonnes per hour ferrosilicon, 75% Si which desired valuable reduction products.

Eksempel 3Example 3

For uten ferrosilisium kan også det ellers i elektrotermiske ovner fremstilte kalsiumkarbid fremstilles som reduksjonsprodukt i en kullforgassing etter fremgangsmåten ifølge oppfinnelsen;. Because without ferrosilicon, the calcium carbide otherwise produced in electrothermal furnaces can also be produced as a reduction product in a coal gasification according to the method according to the invention.

Som forgassingskull anvendes amerikansk fiberkull som i rå tilstand inneholder ca. 11,5 vekt$ aske og 2,8 vekt% vann. Den brennbare del av denne fiberkull inneholder 85,55 vektfo C, 5,23 uekt% H, 6,24 vekt/» 0, 1,52 vekt$ N, 1,4-6 vekt% S. Kalsiumoksydinnholdet av asken er med American fibrous coal is used as gasification coal, which in its raw state contains approx. 11.5% by weight of ash and 2.8% by weight of water. The combustible part of this fibrous coal contains 85.55 wt% C, 5.23 wt% H, 6.24 wt% 0, 1.52 wt% N, 1.4-6 wt% S. The calcium oxide content of the ash is

ca.- 50 vekt% temmelig høyt. Som reduksjonsmiddel tjener kalsinert antrasit. approx. 50% by weight, quite high. Calcined anthracite serves as a reducing agent.

Anvender man analogt til foregående eksempler 106,91 tonn pr. time råtørket til 90 % mindre enn 90 ura finmalt kullstøv, forgasser ved 2200°-2600°C med rundt 70 720 m 3 pr. tilne oksygen, 99,9 %- lg så lar det seg i reduksjonssonent6b ved fremgangsmåten ifølge oppfinnelsen Analogously to previous examples, 106.91 tonnes per hour raw dried to 90% less than 90 ura finely ground coal dust, gasifies at 2200°-2600°C with around 70,720 m 3 per tilne oxygen, 99.9%-lg then it is possible in the reduction sonent6b by the method according to the invention

av tilslagsstof f blandingen bestående av rundt 4-8,4-5 tonn pr. time brent kalk, 96 %- lg og rundt 36,06 tonn pr. time kalsinert antrasit ved ca. 2000°C, smeltes rundt 60 tonn pr. time 80 %- lg kal siumkarbid idet over 14- fjernes rundt 10,82 tonn pr. time støv. Samtidig oppstår rundt 231 000 m 3 pr. time foravstøvet råsyntesegass som forlater sjaktovnen 6 med rundt 4-00°C og inneholder ca. 73 - 74- vol# 00, 24- - 25 vol/o Hg, og rundt 1 - 3 vol$ Ng, COg. Spesielt fordelaktig viser det seg i det høye innhold av basiske tilslagsstoffer i blandingen således at råsyntesegassen praktisk talt er svo-velf ri. of aggregate f the mixture consisting of around 4-8.4-5 tonnes per hour of quicklime, 96% lg and around 36.06 tonnes per hour calcined anthracite at approx. 2000°C, around 60 tonnes are melted per hour 80%-lg calcium carbide, since over 14- around 10.82 tonnes are removed per hour of dust. At the same time, around 231,000 m 3 occur per hour pre-dusted raw synthesis gas which leaves the shaft furnace 6 at around 4-00°C and contains approx. 73 - 74- vol# 00, 24- - 25 vol/o Hg, and around 1 - 3 vol$ Ng, COg. Particularly advantageous is the high content of basic aggregates in the mixture, so that the raw synthesis gas is practically sulphur-free.

Claims (15)

1. Fremgangsmåte til fremstilling av syntesegass (CO + Hg) ved autoterm forgassing av findelte kullstoff-rike materialer med oksygen, eventuelt i nærvær av tilsetningsgasser, karakterisert ved at kull-støvet inndyses med en partikkel størrelse på 0 - 0,1 mm sammen med oksygen og eventuelt en tilsetningsgass i en med 2000 - 2600°C holdt fo rgassingssone at den dannede flyveaskeholdige rå syntesegass med deri iboende termisk energi føres gjennom en med utgangsstoffene for en endoterm karbotermisk reduksjon fylt reduksjonssone og formert ved den ved den karbotermiske reduks jon ?dann ede synt esegass gjennom et dertil tilknyttet med de samme stoffer fylt foroppvarmingssone og fjernes ved en temperatur på 300 - 1 500°C til rensning og konvertering, og at under reduksjonssonen uttas reaksjonsprodukt av karbotermisk reduksjon, samt dannet slagg, smel"t end ef lyt ende fra en samle- og etterreaks jonssone.1. Process for the production of synthesis gas (CO + Hg) by autothermal gasification of finely divided carbon-rich materials with oxygen, possibly in the presence of additive gases, characterized in that the coal dust is injected with a particle size of 0 - 0.1 mm together with oxygen and possibly an additive gas in a gasification zone held at 2000 - 2600°C that the formed fly ash-containing raw synthesis gas with inherent thermal energy is passed through a reduction zone filled with the starting materials for an endothermic carbothermic reduction and multiplied by it by the carbothermic reduction ?form ede synthesis gas through a preheating zone connected to it filled with the same substances and removed at a temperature of 300 - 1,500°C for purification and conversion, and that during the reduction zone the reaction product of carbothermic reduction, as well as formed slag, melted and ef lyt end from a collection and after-reaction zone. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at askedelen av det inndyste k.ullstøv samt det for den karbotermiske reduksjon anvendte kull, i det minste delvis anvendes som reaksjonsdeltager ved den karbotermiske reduksjon.2. Method according to claim 1, characterized in that the ash part of the injected coal dust and the coal used for the carbothermic reduction are at least partially used as reaction participants in the carbothermic reduction. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at en rå syntesegass som forlater foroppvarmingssonen befries for støv og aske, og disse faststoffer inndyses i det minste delvis i kretsløp sammen med frisk kullstøv på nytt over f orgassingssGrøen inn i reduksjonssonen.3. Method according to claim 1 or 2, characterized in that a raw synthesis gas that leaves the preheating zone is freed of dust and ash, and these solids are at least partially injected in a circuit together with fresh coal dust again over the pregassing sGrø into the reduction zone. 4-. Fremgangsmåte ifølge et av kravene 1-3, karakterisert ved at utgangsstoffer : for den karbotermiske reduksjon anvendes i en korn størrelse på <1> 0 - 20 mm, eller 20 - 4.0 mm.4-. Method according to one of the claims 1-3, characterized in that starting materials: for the carbothermic reduction are used in a grain size of <1> 0 - 20 mm, or 20 - 4.0 mm. 5. Fremgang små "be ifølge et av kravene 1-4-, karakterisert 'ved at reduksjonssonen sideveis står i åpen forbindelse med minst to forgassingssoner oppad i foroppvarmingssonen.5. Small progress according to one of claims 1-4, characterized in that the reduction zone is laterally in open connection with at least two gasification zones upwards in the preheating zone. 6.. - ■ Fremgangsmåte ifølge et av kravene 1-5, karakterisert ved at foroppvarmingssone og reduksjonssonen beskikkes med koks, jernavfall og eventuelt kvarts, idet det som reaksjonsprodukt av den karbotermiske reduksjon 1300 til 1800°C utvinnes ferrosilisium.6.. - ■ Method according to one of claims 1-5, characterized in that the preheating zone and the reduction zone are coated with coke, iron waste and possibly quartz, ferrosilicon being extracted as a reaction product of the carbothermic reduction at 1300 to 1800°C. 7. Fremgangsmåte ifølge et avakravene 1-5, karakterisert' -.ved at foroppvarmingssonen og reduksjonsaonen beskikkes med koks eller kalsinert antrasit og kalk, idet det som reaksjonsprodukt av den karbotermiske reduksjon ved 1800 til 2300°C utvinnes kalsiumkarbid.7. Method according to one of claims 1-5, characterized in that the preheating zone and the reduction zone are coated with coke or calcined anthracite and lime, calcium carbide being recovered as a reaction product of the carbothermic reduction at 1800 to 2300°C. 8. Fremgangsmåte ifølge et av kravene 1-5, karakterisert ved at foroppvarmingssonen og reduksjonssonen beskikkes med koks, kalsiumfosfat og kvarts, idet det som reaksjonsprodukt av den karbotermiske reduksjon ved 1300 til 170o°C utvinnes elementært fosfor.8. Method according to one of claims 1-5, characterized in that the preheating zone and the reduction zone are coated with coke, calcium phosphate and quartz, elemental phosphorus being extracted as a reaction product of the carbothermic reduction at 1300 to 170o°C. 9. Fremgangsmåte ifølge et av kravene 1-5, karakterisert ved at foroppvarmingssonen og reduksjonssonen beskikkes med koks, og oksydisk jernmalm, idet det som reaksjonsprodukt av den karbotermiske reduksjon ved 1300 til 180o°C utvinnes metallisk jern.9. Method according to one of claims 1-5, characterized in that the preheating zone and the reduction zone are coated with coke and oxidic iron ore, metallic iron being extracted as a reaction product of the carbothermic reduction at 1300 to 180o°C. 10. Fremgangsmåte ifølge et av kravene 1-9, karakterisert ved at det som tilsetningsgass anvendes CO, COg, Ng, vanndamp eller i kretsløp ført syntesegass.10. Method according to one of claims 1-9, characterized in that CO, COg, Ng, water vapor or circulating synthesis gas is used as additive gas. 11. Fremgangsmåte ifølge et av kravene 1 - 10,. karakterisert vedati forgassingssonen arbeides med støkiometrisk oksygenoverskudd i forhold til oksydasjonen til CO.11. Method according to one of claims 1 - 10. characterized by the fact that the gasification zone is worked with a stoichiometric excess of oxygen in relation to the oxidation to CO. 12. Fremgangsmåte ifølge et av kravene 1 - 11, karakterisert ved at i en komponent av utgangsstoffene for den karbotermiske reduksjon målrettet tildoseres langs en indre vegg av foroppvarmingssone og reduksjonsson en.12. Method according to one of claims 1 - 11, characterized in that in one component the starting materials for the carbothermic reduction are dosed in a targeted manner along an inner wall of the preheating zone and the reduction zone. 13. Innretning til gjennomføring av fremgangsmåten ifølge et av kravene 1 -12., karakterisert ved en sjaktovn 6, som ovenifra og nedad består av en langstrakt, foroppvarmningskammer 6c, et reduksjonskammer 6b og et etterreaksjonskammer 6d, som åpent går over i hverandre, minst to ovenfor;:- hverandre liggende sideveis til reduksjonskammer 6b tilgrensende, og med dette åpent forbundet, sylindriske forgassingskammer 6a, hvori hver gang dyse 3 munner ut for felles tilførsel av kullstøv og oksygen og eventuelt tilsetningsgasser, en tilførsel 8 for utgangsstoffer av .den karbotermiske reduksjon og en avtrekksledning 9, 12 for rå syntesegass ved toppen av sjaktovnen 6, minst en avtrekksledning 7a, 7b, og etterreaksjonskammer. 6d til avtrekk av smeltet slagg og smelteflytende reaksjonsprodukt fra den karbotermiske reduksjon.13. Device for carrying out the method according to one of claims 1 - 12., characterized by a shaft furnace 6, which from top to bottom consists of an elongated, pre-heating chamber 6c, a reduction chamber 6b and a post-reaction chamber 6d, which open into each other, at least two above;:- each other lying laterally to the reduction chamber 6b adjacent to, and with this openly connected, cylindrical gasification chamber 6a, in which each time nozzle 3 opens for a joint supply of coal dust and oxygen and possibly additive gases, a supply 8 for starting materials of the carbothermic reduction and an exhaust line 9, 12 for raw synthesis gas at the top of the shaft furnace 6, at least one exhaust line 7a, 7b, and post-reaction chamber. 6d for extraction of molten slag and molten reaction product from the carbothermic reduction. 14-. Innretning ifølge krav 13, karakterisert ved hver gang en foran hver dyse 3 koblet mellombunker 2 for kullstøv, en avstøvningsinnretning 11 i avtrekksledningen 9, 12 for rå syntesegass, og tilbake-f øringsl edninger 13 for det .adskilte mineralske støv fra avstøvningsinnretningen 11 til de enkelte mellombunkere 2.14-. Device according to claim 13, characterized by each time an intermediate bunker 2 for coal dust is connected in front of each nozzle 3, a dedusting device 11 in the extraction line 9, 12 for raw synthesis gas, and return lines 13 for the separated mineral dust from the dedusting device 11 to the individual intermediate bunkers 2. 15. Innretning ifølge" krav 13 eller 14-, karakterisert ved t den øvre del av sjakt-sonen 6 loddrett på sirkelformet anordnede skill eblikk 16 til avgrensning av et ringrom 6e mellom skilleblikket 16 og den indre vegg av sjaktovnen 6, samt ved minst to transportledninger 15 for tilførsel av en komponent av utgangsstoffene for den karbotermiske reduksjon gjennom ringrommet 6e under utforming av en ringformet beskyttelsesmantel som beskytter den indre vegg av sjakten 6.15. Device according to claim 13 or 14, characterized in that the upper part of the shaft zone 6 is perpendicular to the circularly arranged separation plate 16 for delimiting an annular space 6e between the separation plate 16 and the inner wall of the shaft furnace 6, as well as by at least two transport lines 15 for the supply of a component of the starting materials for the carbothermic reduction through the annulus 6e under the design of an annular protective mantle which protects the inner wall of the shaft 6.
NO822797A 1981-08-18 1982-08-17 METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS NO822797L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813132506 DE3132506A1 (en) 1981-08-18 1981-08-18 METHOD AND DEVICE FOR PRODUCING SYNTHESIS GAS

Publications (1)

Publication Number Publication Date
NO822797L true NO822797L (en) 1983-02-21

Family

ID=6139509

Family Applications (1)

Application Number Title Priority Date Filing Date
NO822797A NO822797L (en) 1981-08-18 1982-08-17 METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS

Country Status (12)

Country Link
EP (1) EP0072457B1 (en)
JP (1) JPS5838789A (en)
AR (1) AR228672A1 (en)
AU (1) AU547481B2 (en)
BR (1) BR8204810A (en)
CA (1) CA1200102A (en)
DD (1) DD202733A5 (en)
DE (2) DE3132506A1 (en)
IN (1) IN157893B (en)
NO (1) NO822797L (en)
PL (1) PL133278B1 (en)
ZA (1) ZA825940B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3239774A1 (en) * 1982-10-27 1984-05-03 Hoechst Ag, 6230 Frankfurt METHOD AND DEVICE FOR PRODUCING SYNTHESIS GAS
SE8400092L (en) * 1984-01-10 1985-07-11 T G Owe Berg PROCEDURE FOR COMBUSTION OF COAL WITHOUT EMISSIONS OF COAL DAMAGE
GB8406914D0 (en) * 1984-03-16 1984-04-18 Shell Int Research Gasification of pulverized solid fuel
DE3420515A1 (en) * 1984-06-01 1985-12-05 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR GASIFYING SOLID FUELS
SE453750B (en) * 1984-06-14 1988-02-29 Skf Steel Eng Ab KIT FOR GASING OF FINE DISTRIBUTED COAL CONTENTS
SE446101B (en) * 1984-12-28 1986-08-11 Skf Steel Eng Ab SET AND DEVICE FOR GENERATING GAS
AT382388B (en) * 1985-03-08 1987-02-25 Voest Alpine Ag DEVICE FOR THE GASIFICATION OF FUELS
AT387979B (en) * 1986-12-18 1989-04-10 Voest Alpine Ag METHOD AND DEVICE FOR GASIFYING LOW-QUALITY FUELS
JPH0631348B2 (en) * 1987-07-17 1994-04-27 株式会社日立製作所 Generator Charging Device for Gasification Plant
DE3837587C1 (en) * 1988-11-05 1990-05-23 Krupp Koppers Gmbh, 4300 Essen, De
DE4004874A1 (en) * 1990-02-16 1991-08-29 Krupp Koppers Gmbh METHOD FOR OPERATING A PLANT FOR GASIFYING SOLID FUELS
SG11201408516UA (en) * 2012-07-09 2015-03-30 Southern Co Gasification of high ash, high ash fusion temperature bituminous coals
CN107739025A (en) * 2017-11-17 2018-02-27 北京迈未科技有限公司 A kind of apparatus and method of phosphorus coal chemical industry coproduction
CN112624069A (en) * 2019-10-09 2021-04-09 车建青 Yellow phosphorus preparation process based on oxygen thermal method
CN113955757B (en) * 2021-11-26 2023-11-03 内蒙古禹源机械有限公司 Device and process for preparing carbon dioxide capturing agent from gasified slag and combining hydrogen and alloy
CN114408885B (en) * 2021-12-28 2023-08-29 中节能工业节能有限公司 Reducing agent for producing yellow phosphorus by thermal method and preparation method thereof
CN119241038A (en) * 2024-12-06 2025-01-03 中科合肥煤气化技术有限公司 Device and method for utilizing all components of coal gasification fine slag

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB229331A (en) * 1924-02-13 1925-11-12 Louis Chavanne Improved process for gasifying solid fuel reducing ores and smelting metals and apparatus therefor
GB237883A (en) * 1924-07-29 1926-12-20 Louis Chavanne Improved process and apparatus for the gasification of solid fuel, applicable also to volatilizing or reducing ores
GB332366A (en) * 1929-06-15 1930-07-24 Henri Jean Francois Philipon Process for gasifying fuels in a molten-ash type gas-producer and for simultaneously treating ores or residues
CH305380A (en) * 1947-12-29 1955-02-28 Directie Staatsmijnen Nl Process for gasifying a fine grain fuel and installation for implementing this process.
DE872952C (en) * 1949-02-05 1953-04-09 Koppers Co Inc Method of making sponge iron
FR1041273A (en) * 1951-03-16 1953-10-22 Basf Ag Process for carrying out reactions, at high temperatures, in gasifiers
DE1021835B (en) * 1953-10-29 1958-01-02 Stamicarbon Process for the production of calcium carbide in a shaft furnace
US4153426A (en) * 1977-07-18 1979-05-08 Arthur G. Mckee & Company Synthetic gas production

Also Published As

Publication number Publication date
PL133278B1 (en) 1985-05-31
AU8722282A (en) 1983-04-14
ZA825940B (en) 1983-07-27
DD202733A5 (en) 1983-09-28
AR228672A1 (en) 1983-03-30
EP0072457A2 (en) 1983-02-23
BR8204810A (en) 1983-08-02
PL237937A1 (en) 1983-04-25
DE3132506A1 (en) 1983-03-03
JPS5838789A (en) 1983-03-07
IN157893B (en) 1986-07-19
EP0072457A3 (en) 1983-07-20
CA1200102A (en) 1986-02-04
AU547481B2 (en) 1985-10-24
EP0072457B1 (en) 1985-05-29
DE3263892D1 (en) 1985-07-04

Similar Documents

Publication Publication Date Title
SU1052165A3 (en) Method for reducing iron oxide
NO822797L (en) METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS
KR101663343B1 (en) Method for producing cast iron or semi steel with reducing gas
KR940004897B1 (en) Method and apparatus for obtaining electrical energy by using upper gas from direct reduction area
EP2430127B1 (en) Two stage dry feed gasification system and process
EP0027121B1 (en) A method for recovering volatile constituents from carbonaceous materials
JPS60500674A (en) Methods for desulfurizing, denitrifying and oxidizing carbonaceous fuels
US20150152344A1 (en) Melt gasifier system
US4095960A (en) Apparatus and method for the gasification of solid carbonaceous material
GB2082624A (en) Method of gas production
CA1262510A (en) Smelting process and apparatus for recovering metals from non-ferrous metal, sulphide ores or concentrates
EP1114190A1 (en) Blast furnace with narrowed top section and method of using
US4685964A (en) Method and apparatus for producing molten iron using coal
US4062673A (en) Flash smelting of iron with production of hydrogen of hydrogenation quality
CN104024439A (en) Process for the carbothermic or electrothermic production of crude iron or base products
US1799885A (en) Process of generating producer gas
TW304982B (en)
KR840002356B1 (en) Method for the direct reduction of iron in a shaft furnace using gas from coal
US2187872A (en) Gas producer for gasifying granular fuels
US4778484A (en) Partial oxidation process with second stage addition of iron containing additive
CN111218535A (en) Method for producing direct reduced iron by heating circulating reducing gas in gas production of molten iron bath coal
US7883556B1 (en) Dual fuel slagging gasifier
EP0305047B1 (en) High temperature desulfurization of synthesis gas
CA1183691A (en) Method for removing sulphur in conjunction with the gasification of carbonaceous material in metal smelts
EP0066563A2 (en) A gasification apparatus